Cargando…
An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data
Epilepsy is a chronic brain disease with recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is the most common pathological cause of epilepsy. With the development of computer-aided diagnosis technology, there are many auxiliary diagnostic approaches based on deep learning algorithms. However,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604199/ https://www.ncbi.nlm.nih.gov/pubmed/37892964 http://dx.doi.org/10.3390/bioengineering10101234 |
_version_ | 1785126779448459264 |
---|---|
author | Qu, Ruowei Ji, Xuan Wang, Shifeng Wang, Zhaonan Wang, Le Yang, Xinsheng Yin, Shaoya Gu, Junhua Wang, Alan Xu, Guizhi |
author_facet | Qu, Ruowei Ji, Xuan Wang, Shifeng Wang, Zhaonan Wang, Le Yang, Xinsheng Yin, Shaoya Gu, Junhua Wang, Alan Xu, Guizhi |
author_sort | Qu, Ruowei |
collection | PubMed |
description | Epilepsy is a chronic brain disease with recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is the most common pathological cause of epilepsy. With the development of computer-aided diagnosis technology, there are many auxiliary diagnostic approaches based on deep learning algorithms. However, the causes of epilepsy are complex, and distinguishing different types of epilepsy accurately is challenging with a single mode of examination. In this study, our aim is to assess the combination of multi-modal epilepsy medical information from structural MRI, PET image, typical clinical symptoms and personal demographic and cognitive data (PDC) by adopting a multi-channel 3D deep convolutional neural network and pre-training PET images. The results show better diagnosis accuracy than using one single type of medical data alone. These findings reveal the potential of a deep neural network in multi-modal medical data fusion. |
format | Online Article Text |
id | pubmed-10604199 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106041992023-10-28 An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data Qu, Ruowei Ji, Xuan Wang, Shifeng Wang, Zhaonan Wang, Le Yang, Xinsheng Yin, Shaoya Gu, Junhua Wang, Alan Xu, Guizhi Bioengineering (Basel) Article Epilepsy is a chronic brain disease with recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is the most common pathological cause of epilepsy. With the development of computer-aided diagnosis technology, there are many auxiliary diagnostic approaches based on deep learning algorithms. However, the causes of epilepsy are complex, and distinguishing different types of epilepsy accurately is challenging with a single mode of examination. In this study, our aim is to assess the combination of multi-modal epilepsy medical information from structural MRI, PET image, typical clinical symptoms and personal demographic and cognitive data (PDC) by adopting a multi-channel 3D deep convolutional neural network and pre-training PET images. The results show better diagnosis accuracy than using one single type of medical data alone. These findings reveal the potential of a deep neural network in multi-modal medical data fusion. MDPI 2023-10-21 /pmc/articles/PMC10604199/ /pubmed/37892964 http://dx.doi.org/10.3390/bioengineering10101234 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qu, Ruowei Ji, Xuan Wang, Shifeng Wang, Zhaonan Wang, Le Yang, Xinsheng Yin, Shaoya Gu, Junhua Wang, Alan Xu, Guizhi An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data |
title | An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data |
title_full | An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data |
title_fullStr | An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data |
title_full_unstemmed | An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data |
title_short | An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data |
title_sort | integrated multi-channel deep neural network for mesial temporal lobe epilepsy identification using multi-modal medical data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604199/ https://www.ncbi.nlm.nih.gov/pubmed/37892964 http://dx.doi.org/10.3390/bioengineering10101234 |
work_keys_str_mv | AT quruowei anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT jixuan anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT wangshifeng anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT wangzhaonan anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT wangle anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT yangxinsheng anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT yinshaoya anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT gujunhua anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT wangalan anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT xuguizhi anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT quruowei integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT jixuan integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT wangshifeng integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT wangzhaonan integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT wangle integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT yangxinsheng integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT yinshaoya integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT gujunhua integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT wangalan integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata AT xuguizhi integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata |