Cargando…

An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data

Epilepsy is a chronic brain disease with recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is the most common pathological cause of epilepsy. With the development of computer-aided diagnosis technology, there are many auxiliary diagnostic approaches based on deep learning algorithms. However,...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Ruowei, Ji, Xuan, Wang, Shifeng, Wang, Zhaonan, Wang, Le, Yang, Xinsheng, Yin, Shaoya, Gu, Junhua, Wang, Alan, Xu, Guizhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604199/
https://www.ncbi.nlm.nih.gov/pubmed/37892964
http://dx.doi.org/10.3390/bioengineering10101234
_version_ 1785126779448459264
author Qu, Ruowei
Ji, Xuan
Wang, Shifeng
Wang, Zhaonan
Wang, Le
Yang, Xinsheng
Yin, Shaoya
Gu, Junhua
Wang, Alan
Xu, Guizhi
author_facet Qu, Ruowei
Ji, Xuan
Wang, Shifeng
Wang, Zhaonan
Wang, Le
Yang, Xinsheng
Yin, Shaoya
Gu, Junhua
Wang, Alan
Xu, Guizhi
author_sort Qu, Ruowei
collection PubMed
description Epilepsy is a chronic brain disease with recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is the most common pathological cause of epilepsy. With the development of computer-aided diagnosis technology, there are many auxiliary diagnostic approaches based on deep learning algorithms. However, the causes of epilepsy are complex, and distinguishing different types of epilepsy accurately is challenging with a single mode of examination. In this study, our aim is to assess the combination of multi-modal epilepsy medical information from structural MRI, PET image, typical clinical symptoms and personal demographic and cognitive data (PDC) by adopting a multi-channel 3D deep convolutional neural network and pre-training PET images. The results show better diagnosis accuracy than using one single type of medical data alone. These findings reveal the potential of a deep neural network in multi-modal medical data fusion.
format Online
Article
Text
id pubmed-10604199
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106041992023-10-28 An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data Qu, Ruowei Ji, Xuan Wang, Shifeng Wang, Zhaonan Wang, Le Yang, Xinsheng Yin, Shaoya Gu, Junhua Wang, Alan Xu, Guizhi Bioengineering (Basel) Article Epilepsy is a chronic brain disease with recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is the most common pathological cause of epilepsy. With the development of computer-aided diagnosis technology, there are many auxiliary diagnostic approaches based on deep learning algorithms. However, the causes of epilepsy are complex, and distinguishing different types of epilepsy accurately is challenging with a single mode of examination. In this study, our aim is to assess the combination of multi-modal epilepsy medical information from structural MRI, PET image, typical clinical symptoms and personal demographic and cognitive data (PDC) by adopting a multi-channel 3D deep convolutional neural network and pre-training PET images. The results show better diagnosis accuracy than using one single type of medical data alone. These findings reveal the potential of a deep neural network in multi-modal medical data fusion. MDPI 2023-10-21 /pmc/articles/PMC10604199/ /pubmed/37892964 http://dx.doi.org/10.3390/bioengineering10101234 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Qu, Ruowei
Ji, Xuan
Wang, Shifeng
Wang, Zhaonan
Wang, Le
Yang, Xinsheng
Yin, Shaoya
Gu, Junhua
Wang, Alan
Xu, Guizhi
An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data
title An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data
title_full An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data
title_fullStr An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data
title_full_unstemmed An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data
title_short An Integrated Multi-Channel Deep Neural Network for Mesial Temporal Lobe Epilepsy Identification Using Multi-Modal Medical Data
title_sort integrated multi-channel deep neural network for mesial temporal lobe epilepsy identification using multi-modal medical data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604199/
https://www.ncbi.nlm.nih.gov/pubmed/37892964
http://dx.doi.org/10.3390/bioengineering10101234
work_keys_str_mv AT quruowei anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT jixuan anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT wangshifeng anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT wangzhaonan anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT wangle anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT yangxinsheng anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT yinshaoya anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT gujunhua anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT wangalan anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT xuguizhi anintegratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT quruowei integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT jixuan integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT wangshifeng integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT wangzhaonan integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT wangle integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT yangxinsheng integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT yinshaoya integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT gujunhua integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT wangalan integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata
AT xuguizhi integratedmultichanneldeepneuralnetworkformesialtemporallobeepilepsyidentificationusingmultimodalmedicaldata