Cargando…
On the Use of Machine Learning Techniques and Non-Invasive Indicators for Classifying and Predicting Cardiac Disorders
This research aims to enhance the classification and prediction of ischemic heart diseases using machine learning techniques, with a focus on resource efficiency and clinical applicability. Specifically, we introduce novel non-invasive indicators known as Campello de Souza features, which require on...
Autores principales: | Ospina, Raydonal, Ferreira, Adenice G. O., de Oliveira, Hélio M., Leiva, Víctor, Castro, Cecilia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604302/ https://www.ncbi.nlm.nih.gov/pubmed/37892978 http://dx.doi.org/10.3390/biomedicines11102604 |
Ejemplares similares
-
Weibull Regression and Machine Learning Survival Models: Methodology, Comparison, and Application to Biomedical Data Related to Cardiac Surgery
por: Cavalcante, Thalytta, et al.
Publicado: (2023) -
A New Wavelet-Based Privatization Mechanism for Probability Distributions
por: de Oliveira, Hélio M., et al.
Publicado: (2022) -
Similarity-Based Predictive Models: Sensitivity Analysis and a Biological Application with Multi-Attributes
por: Sanchez, Jeniffer D., et al.
Publicado: (2023) -
Ingredients for Responsible Machine Learning: A Commented Review of The Hitchhiker’s Guide to Responsible Machine Learning
por: Marmolejo-Ramos, Fernando, et al.
Publicado: (2022) -
Classifying COVID-19 based on amino acids encoding with machine learning algorithms
por: Alkady, Walaa, et al.
Publicado: (2022)