Cargando…
Machine Learning for Automated Classification of Abnormal Lung Sounds Obtained from Public Databases: A Systematic Review
Pulmonary auscultation is essential for detecting abnormal lung sounds during physical assessments, but its reliability depends on the operator. Machine learning (ML) models offer an alternative by automatically classifying lung sounds. ML models require substantial data, and public databases aim to...
Autores principales: | Garcia-Mendez, Juan P., Lal, Amos, Herasevich, Svetlana, Tekin, Aysun, Pinevich, Yuliya, Lipatov, Kirill, Wang, Hsin-Yi, Qamar, Shahraz, Ayala, Ivan N., Khapov, Ivan, Gerberi, Danielle J., Diedrich, Daniel, Pickering, Brian W., Herasevich, Vitaly |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604310/ https://www.ncbi.nlm.nih.gov/pubmed/37892885 http://dx.doi.org/10.3390/bioengineering10101155 |
Ejemplares similares
-
Artificial intelligence and computer simulation models in critical illness
por: Lal, Amos, et al.
Publicado: (2020) -
Evaluation of Digital Health Strategy to Support Clinician-Led Critically Ill Patient Population Management: A Randomized Crossover Study
por: Herasevich, Svetlana, et al.
Publicado: (2023) -
Information and Data Visualization Needs among Direct Care Nurses in the Intensive Care Unit
por: Lindroth, Heidi L., et al.
Publicado: (2022) -
Time to diagnostic certainty for saddle pulmonary embolism in hospitalized patients
por: Pinevich, Yuliya, et al.
Publicado: (2023) -
Clinical Characteristics, Treatment, and Outcomes of Critically Ill Patients With COVID-19: A Scoping Review
por: Huang, Chanyan, et al.
Publicado: (2021)