Cargando…
Self-Supervised Contrastive Learning to Predict the Progression of Alzheimer’s Disease with 3D Amyloid-PET
Early diagnosis of Alzheimer’s disease (AD) is an important task that facilitates the development of treatment and prevention strategies, and may potentially improve patient outcomes. Neuroimaging has shown great promise, including the amyloid-PET, which measures the accumulation of amyloid plaques...
Autores principales: | Kwak, Min Gu, Su, Yi, Chen, Kewei, Weidman, David, Wu, Teresa, Lure, Fleming, Li, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604381/ https://www.ncbi.nlm.nih.gov/pubmed/37892871 http://dx.doi.org/10.3390/bioengineering10101141 |
Ejemplares similares
-
Self-Supervised Contrastive Learning to Predict Alzheimer’s Disease Progression with 3D Amyloid-PET
por: Kwak, Min Gu, et al.
Publicado: (2023) -
A Mutual Knowledge Distillation-Empowered AI Framework for Early Detection of Alzheimer’s Disease Using Incomplete Multi-Modal Images
por: Kwak, Min Gu, et al.
Publicado: (2023) -
Explainable Vision Transformer with Self-Supervised Learning to Predict Alzheimer’s Disease Progression Using 18F-FDG PET
por: Khatri, Uttam, et al.
Publicado: (2023) -
Malicious Traffic Identification with Self-Supervised Contrastive Learning
por: Yang, Jin, et al.
Publicado: (2023) -
Contrastive Self-Supervised Learning for Stress Detection from ECG Data
por: Rabbani, Suha, et al.
Publicado: (2022)