Cargando…
The Effects of Flavonol and Flavone Glucuronides from Potentilla chinensis Leaves on TNF-α-Exposed Normal Human Dermal Fibroblasts
Skin aging is a complex biological process influenced by a variety of factors, including UV radiation. UV radiation accelerates collagen degradation via the production of reactive oxygen species (ROS) and cytokines, including TNF-α. In a prior investigation, the inhibitory properties of flavonol and...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604389/ https://www.ncbi.nlm.nih.gov/pubmed/37891882 http://dx.doi.org/10.3390/antiox12101803 |
_version_ | 1785126823835729920 |
---|---|
author | Choi, Yea Jung Lee, So Young Son, So-Ri Park, Jun Yeon Jang, Dae Sik Lee, Sullim |
author_facet | Choi, Yea Jung Lee, So Young Son, So-Ri Park, Jun Yeon Jang, Dae Sik Lee, Sullim |
author_sort | Choi, Yea Jung |
collection | PubMed |
description | Skin aging is a complex biological process influenced by a variety of factors, including UV radiation. UV radiation accelerates collagen degradation via the production of reactive oxygen species (ROS) and cytokines, including TNF-α. In a prior investigation, the inhibitory properties of flavonol and flavone glucuronides derived from Potentilla chinensis on TNF-α-induced ROS and MMP-1 production were explored. Consequently, we verified the skin-protective effects of these flavonol and flavone glucuronides, including potentilloside A, from P. chinensis, and conducted a structure–activity relationship analysis as part of our ongoing research. We investigated the protective effects of the extract and its 11 isolates on TNF-α-stimulated normal human dermal fibroblasts (NHDFs). Ten flavonol and flavone glucuronides significantly inhibited ROS generation (except for 7) and suppressed MMP-1 secretion, except for 2. In contrast, six isolates (1, 5, 6, 11, 9, 10, and 11) showed a significant reverse effect on COLIA1 secretion. Comparing the three experimental results of each isolate, potentilloside A (1) showed the most potent skin cell-protective effect among the isolates. Evaluation of the signaling pathway of potentilloside A in TNF-α-stimulated NHDF revealed that potentilloside A inhibits the phosphorylation of ERK, JNK, and c-Jun. Taken together, these results suggest that compounds isolated from P. chinensis, especially potentilloside A, can be used to inhibit skin damage, including aging. |
format | Online Article Text |
id | pubmed-10604389 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106043892023-10-28 The Effects of Flavonol and Flavone Glucuronides from Potentilla chinensis Leaves on TNF-α-Exposed Normal Human Dermal Fibroblasts Choi, Yea Jung Lee, So Young Son, So-Ri Park, Jun Yeon Jang, Dae Sik Lee, Sullim Antioxidants (Basel) Article Skin aging is a complex biological process influenced by a variety of factors, including UV radiation. UV radiation accelerates collagen degradation via the production of reactive oxygen species (ROS) and cytokines, including TNF-α. In a prior investigation, the inhibitory properties of flavonol and flavone glucuronides derived from Potentilla chinensis on TNF-α-induced ROS and MMP-1 production were explored. Consequently, we verified the skin-protective effects of these flavonol and flavone glucuronides, including potentilloside A, from P. chinensis, and conducted a structure–activity relationship analysis as part of our ongoing research. We investigated the protective effects of the extract and its 11 isolates on TNF-α-stimulated normal human dermal fibroblasts (NHDFs). Ten flavonol and flavone glucuronides significantly inhibited ROS generation (except for 7) and suppressed MMP-1 secretion, except for 2. In contrast, six isolates (1, 5, 6, 11, 9, 10, and 11) showed a significant reverse effect on COLIA1 secretion. Comparing the three experimental results of each isolate, potentilloside A (1) showed the most potent skin cell-protective effect among the isolates. Evaluation of the signaling pathway of potentilloside A in TNF-α-stimulated NHDF revealed that potentilloside A inhibits the phosphorylation of ERK, JNK, and c-Jun. Taken together, these results suggest that compounds isolated from P. chinensis, especially potentilloside A, can be used to inhibit skin damage, including aging. MDPI 2023-09-27 /pmc/articles/PMC10604389/ /pubmed/37891882 http://dx.doi.org/10.3390/antiox12101803 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Choi, Yea Jung Lee, So Young Son, So-Ri Park, Jun Yeon Jang, Dae Sik Lee, Sullim The Effects of Flavonol and Flavone Glucuronides from Potentilla chinensis Leaves on TNF-α-Exposed Normal Human Dermal Fibroblasts |
title | The Effects of Flavonol and Flavone Glucuronides from Potentilla chinensis Leaves on TNF-α-Exposed Normal Human Dermal Fibroblasts |
title_full | The Effects of Flavonol and Flavone Glucuronides from Potentilla chinensis Leaves on TNF-α-Exposed Normal Human Dermal Fibroblasts |
title_fullStr | The Effects of Flavonol and Flavone Glucuronides from Potentilla chinensis Leaves on TNF-α-Exposed Normal Human Dermal Fibroblasts |
title_full_unstemmed | The Effects of Flavonol and Flavone Glucuronides from Potentilla chinensis Leaves on TNF-α-Exposed Normal Human Dermal Fibroblasts |
title_short | The Effects of Flavonol and Flavone Glucuronides from Potentilla chinensis Leaves on TNF-α-Exposed Normal Human Dermal Fibroblasts |
title_sort | effects of flavonol and flavone glucuronides from potentilla chinensis leaves on tnf-α-exposed normal human dermal fibroblasts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604389/ https://www.ncbi.nlm.nih.gov/pubmed/37891882 http://dx.doi.org/10.3390/antiox12101803 |
work_keys_str_mv | AT choiyeajung theeffectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT leesoyoung theeffectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT sonsori theeffectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT parkjunyeon theeffectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT jangdaesik theeffectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT leesullim theeffectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT choiyeajung effectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT leesoyoung effectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT sonsori effectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT parkjunyeon effectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT jangdaesik effectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts AT leesullim effectsofflavonolandflavoneglucuronidesfrompotentillachinensisleavesontnfaexposednormalhumandermalfibroblasts |