Cargando…
Detection and characterization of spike architecture based on deep learning and X-ray computed tomography in barley
BACKGROUND: Spike is the grain-bearing organ in cereal crops, which is a key proxy indicator determining the grain yield and quality. Machine learning methods for image analysis of spike-related phenotypic traits not only hold the promise for high-throughput estimating grain production and quality,...
Autores principales: | Ling, Yimin, Zhao, Qinlong, Liu, Wenxin, Wei, Kexu, Bao, Runfei, Song, Weining, Nie, Xiaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604417/ https://www.ncbi.nlm.nih.gov/pubmed/37891590 http://dx.doi.org/10.1186/s13007-023-01096-w |
Ejemplares similares
-
Determination of wheat spike and spikelet architecture and grain traits using X-ray Computed Tomography imaging
por: Zhou, Hu, et al.
Publicado: (2021) -
Just-in-time deep learning for real-time X-ray computed tomography
por: Graas, Adriaan, et al.
Publicado: (2023) -
Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography
por: Walton, Lucy A., et al.
Publicado: (2015) -
4D Structural root architecture modeling from digital twins by X-Ray Computed Tomography
por: Herrero-Huerta, Monica, et al.
Publicado: (2021) -
A deep learning reconstruction framework for X-ray computed tomography with incomplete data
por: Dong, Jianbing, et al.
Publicado: (2019)