Cargando…
Antioxidant Polyphenols from Lespedeza bicolor Turcz. Honey: Anti-Inflammatory Effects on Lipopolysaccharide-Treated RAW 264.7 Macrophages
Although the honey produced by Lespedeza bicolor Turcz. is precious because of its medicinal value, its pharmacological mechanism is still unclear. Here, its anti-inflammatory and antioxidant functions on lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophages were analyzed using targeted and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604429/ https://www.ncbi.nlm.nih.gov/pubmed/37891888 http://dx.doi.org/10.3390/antiox12101809 |
Sumario: | Although the honey produced by Lespedeza bicolor Turcz. is precious because of its medicinal value, its pharmacological mechanism is still unclear. Here, its anti-inflammatory and antioxidant functions on lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophages were analyzed using targeted and non-targeted metabolomics. Results showed that twelve polyphenols were identified in L. bicolor honey using UHPLC-QQQ-MS/MS. L. bicolor honey extract could scavenge the free radicals DPPH(•) and ABTS(+) and reduce Fe(3+). Furthermore, pretreatment with L. bicolor honey extract significantly decreased NO production; suppressed the expression of COX-2, IL-10, TNF-α, and iNOS; and upregulated HO-1′s expression in the cells with LPS application. UHPLC-Q-TOF-MS/MS-based metabolomics results revealed that L. bicolor honey extract could protect against inflammatory damage caused by LPS through the reduced activation of sphingolipid metabolism and necroptosis pathways. These findings demonstrate that L. bicolor honey possesses excellent antioxidant and anti-inflammatory activities. |
---|