Cargando…
Influence of the Synthetic Cannabinoid Agonist on Normal and Inflamed Cartilage: An In Vitro Study
Medical marijuana (versus Marijuana derivatives) has been reported to possess analgesic, immunomodulatory, and anti-inflammatory properties. Recent studies in animal models of arthritis showed that cannabinoids, a group of compounds produced from marijuana, may attenuate joint damage. However, wheth...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604475/ https://www.ncbi.nlm.nih.gov/pubmed/37892184 http://dx.doi.org/10.3390/biom13101502 |
Sumario: | Medical marijuana (versus Marijuana derivatives) has been reported to possess analgesic, immunomodulatory, and anti-inflammatory properties. Recent studies in animal models of arthritis showed that cannabinoids, a group of compounds produced from marijuana, may attenuate joint damage. However, whether marijuana byproducts can suppress osteoarthritis (OA)-associated cartilage degradation has not been previously reported. In this study, human chondrocytes were isolated from healthy articular cartilage, expanded in vitro, and subjected to pellet culture in a chondrogenic medium to form cartilage tissues. We first examined the influence of marijuana byproducts on normal cartilage by treating chondrocyte-derived tissues with a synthetic cannabinoid agonist, Win-55,212-2 (Win), at different concentrations ranging from 0.01 to 10 µM. After treatment, the tissue phenotype was assessed using glycosaminoglycan (GAG) assay and real-time PCR. Next, cartilage tissues were pre-treated with interleukin-1β (IL-1β) to generate an inflamed phenotype and then cultured with Win to assess its therapeutic potential. The results showed that at concentrations lower than 1 µM, Win treatment did not significantly impair chondrocyte growth or cartilage formation capacity, but at a high level (>10 µM), it remarkably suppressed cell proliferation. Interestingly, under the condition of IL-1β pre-treatment, Win was able to partially preserve the cartilage matrix and decrease the production of interleukin-6, although the protective effect was mild. Taken together, our results indicated that the variable effects of Win on chondrocytes occur in a concentration-dependent manner. Whether cannabinoid derivatives can be used to treat cartilage degradation or can alter other structural changes in OA deserve further investigation. |
---|