Cargando…

A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor

Autologous bone replacement remains the preferred treatment for segmental defects of the mandible; however, it cannot replicate complex facial geometry and causes donor site morbidity. Bone tissue engineering has the potential to overcome these limitations. Various commercially available calcium pho...

Descripción completa

Detalles Bibliográficos
Autores principales: Al Maruf, D. S. Abdullah, Cheng, Kai, Xin, Hai, Cheung, Veronica K. Y., Foley, Matthew, Wise, Innes K., Lewin, Will, Froggatt, Catriona, Wykes, James, Parthasarathi, Krishnan, Leinkram, David, Howes, Dale, Suchowerska, Natalka, McKenzie, David R., Gupta, Ruta, Crook, Jeremy M., Clark, Jonathan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604717/
https://www.ncbi.nlm.nih.gov/pubmed/37892963
http://dx.doi.org/10.3390/bioengineering10101233
_version_ 1785126902258728960
author Al Maruf, D. S. Abdullah
Cheng, Kai
Xin, Hai
Cheung, Veronica K. Y.
Foley, Matthew
Wise, Innes K.
Lewin, Will
Froggatt, Catriona
Wykes, James
Parthasarathi, Krishnan
Leinkram, David
Howes, Dale
Suchowerska, Natalka
McKenzie, David R.
Gupta, Ruta
Crook, Jeremy M.
Clark, Jonathan R.
author_facet Al Maruf, D. S. Abdullah
Cheng, Kai
Xin, Hai
Cheung, Veronica K. Y.
Foley, Matthew
Wise, Innes K.
Lewin, Will
Froggatt, Catriona
Wykes, James
Parthasarathi, Krishnan
Leinkram, David
Howes, Dale
Suchowerska, Natalka
McKenzie, David R.
Gupta, Ruta
Crook, Jeremy M.
Clark, Jonathan R.
author_sort Al Maruf, D. S. Abdullah
collection PubMed
description Autologous bone replacement remains the preferred treatment for segmental defects of the mandible; however, it cannot replicate complex facial geometry and causes donor site morbidity. Bone tissue engineering has the potential to overcome these limitations. Various commercially available calcium phosphate-based bone substitutes (Novabone(®), BioOss(®), and Zengro(®)) are commonly used in dentistry for small bone defects around teeth and implants. However, their role in ectopic bone formation, which can later be applied as vascularized graft in a bone defect, is yet to be explored. Here, we compare the above-mentioned bone substitutes with autologous bone with the aim of selecting one for future studies of segmental mandibular repair. Six female sheep, aged 7–8 years, were implanted with 40 mm long four-chambered polyether ether ketone (PEEK) bioreactors prepared using additive manufacturing followed by plasma immersion ion implantation (PIII) to improve hydrophilicity and bioactivity. Each bioreactor was wrapped with vascularized scapular periosteum and the chambers were filled with autologous bone graft, Novabone(®), BioOss(®), and Zengro(®), respectively. The bioreactors were implanted within a subscapular muscle pocket for either 8 weeks (two sheep), 10 weeks (two sheep), or 12 weeks (two sheep), after which they were removed and assessed by microCT and routine histology. Moderate bone formation was observed in autologous bone grafts, while low bone formation was observed in the BioOss(®) and Zengro(®) chambers. No bone formation was observed in the Novabone(®) chambers. Although the BioOss(®) and Zengro(®) chambers contained relatively small amounts of bone, endochondral ossification and retained hydroxyapatite suggest their potential in new bone formation in an ectopic site if a consistent supply of progenitor cells and/or growth factors can be ensured over a longer duration.
format Online
Article
Text
id pubmed-10604717
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106047172023-10-28 A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor Al Maruf, D. S. Abdullah Cheng, Kai Xin, Hai Cheung, Veronica K. Y. Foley, Matthew Wise, Innes K. Lewin, Will Froggatt, Catriona Wykes, James Parthasarathi, Krishnan Leinkram, David Howes, Dale Suchowerska, Natalka McKenzie, David R. Gupta, Ruta Crook, Jeremy M. Clark, Jonathan R. Bioengineering (Basel) Article Autologous bone replacement remains the preferred treatment for segmental defects of the mandible; however, it cannot replicate complex facial geometry and causes donor site morbidity. Bone tissue engineering has the potential to overcome these limitations. Various commercially available calcium phosphate-based bone substitutes (Novabone(®), BioOss(®), and Zengro(®)) are commonly used in dentistry for small bone defects around teeth and implants. However, their role in ectopic bone formation, which can later be applied as vascularized graft in a bone defect, is yet to be explored. Here, we compare the above-mentioned bone substitutes with autologous bone with the aim of selecting one for future studies of segmental mandibular repair. Six female sheep, aged 7–8 years, were implanted with 40 mm long four-chambered polyether ether ketone (PEEK) bioreactors prepared using additive manufacturing followed by plasma immersion ion implantation (PIII) to improve hydrophilicity and bioactivity. Each bioreactor was wrapped with vascularized scapular periosteum and the chambers were filled with autologous bone graft, Novabone(®), BioOss(®), and Zengro(®), respectively. The bioreactors were implanted within a subscapular muscle pocket for either 8 weeks (two sheep), 10 weeks (two sheep), or 12 weeks (two sheep), after which they were removed and assessed by microCT and routine histology. Moderate bone formation was observed in autologous bone grafts, while low bone formation was observed in the BioOss(®) and Zengro(®) chambers. No bone formation was observed in the Novabone(®) chambers. Although the BioOss(®) and Zengro(®) chambers contained relatively small amounts of bone, endochondral ossification and retained hydroxyapatite suggest their potential in new bone formation in an ectopic site if a consistent supply of progenitor cells and/or growth factors can be ensured over a longer duration. MDPI 2023-10-21 /pmc/articles/PMC10604717/ /pubmed/37892963 http://dx.doi.org/10.3390/bioengineering10101233 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Al Maruf, D. S. Abdullah
Cheng, Kai
Xin, Hai
Cheung, Veronica K. Y.
Foley, Matthew
Wise, Innes K.
Lewin, Will
Froggatt, Catriona
Wykes, James
Parthasarathi, Krishnan
Leinkram, David
Howes, Dale
Suchowerska, Natalka
McKenzie, David R.
Gupta, Ruta
Crook, Jeremy M.
Clark, Jonathan R.
A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor
title A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor
title_full A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor
title_fullStr A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor
title_full_unstemmed A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor
title_short A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor
title_sort comparison of in vivo bone tissue generation using calcium phosphate bone substitutes in a novel 3d printed four-chamber periosteal bioreactor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604717/
https://www.ncbi.nlm.nih.gov/pubmed/37892963
http://dx.doi.org/10.3390/bioengineering10101233
work_keys_str_mv AT almarufdsabdullah acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT chengkai acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT xinhai acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT cheungveronicaky acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT foleymatthew acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT wiseinnesk acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT lewinwill acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT froggattcatriona acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT wykesjames acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT parthasarathikrishnan acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT leinkramdavid acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT howesdale acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT suchowerskanatalka acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT mckenziedavidr acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT guptaruta acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT crookjeremym acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT clarkjonathanr acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT almarufdsabdullah comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT chengkai comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT xinhai comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT cheungveronicaky comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT foleymatthew comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT wiseinnesk comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT lewinwill comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT froggattcatriona comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT wykesjames comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT parthasarathikrishnan comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT leinkramdavid comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT howesdale comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT suchowerskanatalka comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT mckenziedavidr comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT guptaruta comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT crookjeremym comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor
AT clarkjonathanr comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor