Cargando…
A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor
Autologous bone replacement remains the preferred treatment for segmental defects of the mandible; however, it cannot replicate complex facial geometry and causes donor site morbidity. Bone tissue engineering has the potential to overcome these limitations. Various commercially available calcium pho...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604717/ https://www.ncbi.nlm.nih.gov/pubmed/37892963 http://dx.doi.org/10.3390/bioengineering10101233 |
_version_ | 1785126902258728960 |
---|---|
author | Al Maruf, D. S. Abdullah Cheng, Kai Xin, Hai Cheung, Veronica K. Y. Foley, Matthew Wise, Innes K. Lewin, Will Froggatt, Catriona Wykes, James Parthasarathi, Krishnan Leinkram, David Howes, Dale Suchowerska, Natalka McKenzie, David R. Gupta, Ruta Crook, Jeremy M. Clark, Jonathan R. |
author_facet | Al Maruf, D. S. Abdullah Cheng, Kai Xin, Hai Cheung, Veronica K. Y. Foley, Matthew Wise, Innes K. Lewin, Will Froggatt, Catriona Wykes, James Parthasarathi, Krishnan Leinkram, David Howes, Dale Suchowerska, Natalka McKenzie, David R. Gupta, Ruta Crook, Jeremy M. Clark, Jonathan R. |
author_sort | Al Maruf, D. S. Abdullah |
collection | PubMed |
description | Autologous bone replacement remains the preferred treatment for segmental defects of the mandible; however, it cannot replicate complex facial geometry and causes donor site morbidity. Bone tissue engineering has the potential to overcome these limitations. Various commercially available calcium phosphate-based bone substitutes (Novabone(®), BioOss(®), and Zengro(®)) are commonly used in dentistry for small bone defects around teeth and implants. However, their role in ectopic bone formation, which can later be applied as vascularized graft in a bone defect, is yet to be explored. Here, we compare the above-mentioned bone substitutes with autologous bone with the aim of selecting one for future studies of segmental mandibular repair. Six female sheep, aged 7–8 years, were implanted with 40 mm long four-chambered polyether ether ketone (PEEK) bioreactors prepared using additive manufacturing followed by plasma immersion ion implantation (PIII) to improve hydrophilicity and bioactivity. Each bioreactor was wrapped with vascularized scapular periosteum and the chambers were filled with autologous bone graft, Novabone(®), BioOss(®), and Zengro(®), respectively. The bioreactors were implanted within a subscapular muscle pocket for either 8 weeks (two sheep), 10 weeks (two sheep), or 12 weeks (two sheep), after which they were removed and assessed by microCT and routine histology. Moderate bone formation was observed in autologous bone grafts, while low bone formation was observed in the BioOss(®) and Zengro(®) chambers. No bone formation was observed in the Novabone(®) chambers. Although the BioOss(®) and Zengro(®) chambers contained relatively small amounts of bone, endochondral ossification and retained hydroxyapatite suggest their potential in new bone formation in an ectopic site if a consistent supply of progenitor cells and/or growth factors can be ensured over a longer duration. |
format | Online Article Text |
id | pubmed-10604717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106047172023-10-28 A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor Al Maruf, D. S. Abdullah Cheng, Kai Xin, Hai Cheung, Veronica K. Y. Foley, Matthew Wise, Innes K. Lewin, Will Froggatt, Catriona Wykes, James Parthasarathi, Krishnan Leinkram, David Howes, Dale Suchowerska, Natalka McKenzie, David R. Gupta, Ruta Crook, Jeremy M. Clark, Jonathan R. Bioengineering (Basel) Article Autologous bone replacement remains the preferred treatment for segmental defects of the mandible; however, it cannot replicate complex facial geometry and causes donor site morbidity. Bone tissue engineering has the potential to overcome these limitations. Various commercially available calcium phosphate-based bone substitutes (Novabone(®), BioOss(®), and Zengro(®)) are commonly used in dentistry for small bone defects around teeth and implants. However, their role in ectopic bone formation, which can later be applied as vascularized graft in a bone defect, is yet to be explored. Here, we compare the above-mentioned bone substitutes with autologous bone with the aim of selecting one for future studies of segmental mandibular repair. Six female sheep, aged 7–8 years, were implanted with 40 mm long four-chambered polyether ether ketone (PEEK) bioreactors prepared using additive manufacturing followed by plasma immersion ion implantation (PIII) to improve hydrophilicity and bioactivity. Each bioreactor was wrapped with vascularized scapular periosteum and the chambers were filled with autologous bone graft, Novabone(®), BioOss(®), and Zengro(®), respectively. The bioreactors were implanted within a subscapular muscle pocket for either 8 weeks (two sheep), 10 weeks (two sheep), or 12 weeks (two sheep), after which they were removed and assessed by microCT and routine histology. Moderate bone formation was observed in autologous bone grafts, while low bone formation was observed in the BioOss(®) and Zengro(®) chambers. No bone formation was observed in the Novabone(®) chambers. Although the BioOss(®) and Zengro(®) chambers contained relatively small amounts of bone, endochondral ossification and retained hydroxyapatite suggest their potential in new bone formation in an ectopic site if a consistent supply of progenitor cells and/or growth factors can be ensured over a longer duration. MDPI 2023-10-21 /pmc/articles/PMC10604717/ /pubmed/37892963 http://dx.doi.org/10.3390/bioengineering10101233 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Al Maruf, D. S. Abdullah Cheng, Kai Xin, Hai Cheung, Veronica K. Y. Foley, Matthew Wise, Innes K. Lewin, Will Froggatt, Catriona Wykes, James Parthasarathi, Krishnan Leinkram, David Howes, Dale Suchowerska, Natalka McKenzie, David R. Gupta, Ruta Crook, Jeremy M. Clark, Jonathan R. A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor |
title | A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor |
title_full | A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor |
title_fullStr | A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor |
title_full_unstemmed | A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor |
title_short | A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor |
title_sort | comparison of in vivo bone tissue generation using calcium phosphate bone substitutes in a novel 3d printed four-chamber periosteal bioreactor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604717/ https://www.ncbi.nlm.nih.gov/pubmed/37892963 http://dx.doi.org/10.3390/bioengineering10101233 |
work_keys_str_mv | AT almarufdsabdullah acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT chengkai acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT xinhai acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT cheungveronicaky acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT foleymatthew acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT wiseinnesk acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT lewinwill acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT froggattcatriona acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT wykesjames acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT parthasarathikrishnan acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT leinkramdavid acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT howesdale acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT suchowerskanatalka acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT mckenziedavidr acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT guptaruta acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT crookjeremym acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT clarkjonathanr acomparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT almarufdsabdullah comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT chengkai comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT xinhai comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT cheungveronicaky comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT foleymatthew comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT wiseinnesk comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT lewinwill comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT froggattcatriona comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT wykesjames comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT parthasarathikrishnan comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT leinkramdavid comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT howesdale comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT suchowerskanatalka comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT mckenziedavidr comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT guptaruta comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT crookjeremym comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor AT clarkjonathanr comparisonofinvivobonetissuegenerationusingcalciumphosphatebonesubstitutesinanovel3dprintedfourchamberperiostealbioreactor |