Cargando…
Antibiogram Profile and Detection of Resistance Genes in Pseudomonas aeruginosa Recovered from Hospital Wastewater Effluent
The nosocomial pathogen Pseudomonas aeruginosa (P. aeruginosa) is characterized by increased prevalence in hospital wastewater and is a public health concern. Untreated wastewater severely challenges human health when discharged into nearby aquatic ecosystems. The antibiogram profiles and resistance...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604762/ https://www.ncbi.nlm.nih.gov/pubmed/37887218 http://dx.doi.org/10.3390/antibiotics12101517 |
Sumario: | The nosocomial pathogen Pseudomonas aeruginosa (P. aeruginosa) is characterized by increased prevalence in hospital wastewater and is a public health concern. Untreated wastewater severely challenges human health when discharged into nearby aquatic ecosystems. The antibiogram profiles and resistance genes of P. aeruginosa were evaluated in this study. Wastewater effluents were obtained from a hospital within a six-month sampling period. After the samples were processed and analysed, P. aeruginosa was identified by polymerase chain reaction (PCR) by amplifying OprI and OprL genes. The Kirby–Bauer diffusion technique was employed to check the susceptibility profiles of P. aeruginosa which were further interpreted using CLSI guidelines. A total of 21 resistance genes were investigated among the isolates. The sum of 81 positive P. aeruginosa were isolated in this study. This study’s mean count of Pseudomonas aeruginosa ranged from 2.4 × 105 to 6.5 × 105 CFU/mL. A significant proportion of the isolates were susceptible to imipenem (93%), tobramycin (85%), norfloxacin (85%), aztreonam (70%), ciprofloxacin (51%), meropenem (47%), levofloxacin (43%), and gentamicin (40%). Meanwhile, a low susceptibility was recorded for amikacin and ceftazidime. The overall multiple antibiotics resistance index (MARI) ranged from 0.3 to 0.9, with 75% of the multidrug-resistant isolates. The assessment of β-lactam-resistant genes revealed bla(OXA-1) (3.7%) and bla(SHV) (2.4%). The frequency of carbapenem genes was 6.6% for bla(IMP), 6.6% for bla(KPC), 6.6% for bla(oxa-48), 2.2% for bla(NDM-1), 2.2% for bla(GES), and 2.2% for bla(VIM). Of the aminoglycoside genes screened, 8.6% harboured strA, 11.5% harboured aadA, and 1.5% harboured aph(3)-Ia(aphA1). Only one non-β-lactamase gene (qnrA) was detected, with a prevalence of 4.9%. The findings of this study revealed a high prevalence of multidrug-resistant P. aeruginosa and resistance determinants potentially posing environmental health risks. |
---|