Cargando…
Conditional Variational Autoencoder for Functional Connectivity Analysis of Autism Spectrum Disorder Functional Magnetic Resonance Imaging Data: A Comparative Study
Generative models, such as Variational Autoencoders (VAEs), are increasingly employed for atypical pattern detection in brain imaging. During training, these models learn to capture the underlying patterns within “normal” brain images and generate new samples from those patterns. Neurodivergent stat...
Autores principales: | Sidulova, Mariia, Park, Chung Hyuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604768/ https://www.ncbi.nlm.nih.gov/pubmed/37892939 http://dx.doi.org/10.3390/bioengineering10101209 |
Ejemplares similares
-
Functional magnetic resonance imaging of autism spectrum disorders
por: Dichter, Gabriel S.
Publicado: (2012) -
Meta-analytic connectivity modelling of functional magnetic resonance imaging studies in autism spectrum disorders
por: Goodwill, Alicia M., et al.
Publicado: (2023) -
Robust Multimodal Emotion Recognition from Conversation with Transformer-Based Crossmodality Fusion
por: Xie, Baijun, et al.
Publicado: (2021) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Altered Functional Connectivity in Children With Low-Function Autism Spectrum Disorders
por: Xu, Shoujun, et al.
Publicado: (2019)