Cargando…
Evaluation of the Hierarchical Correspondence between the Human Brain and Artificial Neural Networks: A Review
SIMPLE SUMMARY: Artificial neural networks, inspired by the human brain, have demonstrated human-level performance across multiple task domains, raising the exciting possibility of them returning insights to neuroscientists about the human brain. However, artificial neural networks cannot be directl...
Autores principales: | Pham, Trung Quang, Matsui, Teppei, Chikazoe, Junichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604784/ https://www.ncbi.nlm.nih.gov/pubmed/37887040 http://dx.doi.org/10.3390/biology12101330 |
Ejemplares similares
-
Counterfactual Explanation of Brain Activity Classifiers Using Image-To-Image Transfer by Generative Adversarial Network
por: Matsui, Teppei, et al.
Publicado: (2022) -
Distillation of Regional Activity Reveals Hidden Content of Neural Information in Visual Processing
por: Pham, Trung Quang, et al.
Publicado: (2021) -
Reassessing hierarchical correspondences between brain and deep networks through direct interface
por: Sexton, Nicholas J., et al.
Publicado: (2022) -
A Correspondence Between Normalization Strategies in Artificial and Biological Neural Networks
por: Shen, Yang, et al.
Publicado: (2021) -
Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Xu, Yaoda, et al.
Publicado: (2021)