Cargando…
Deep Learning Methods for Omics Data Imputation
SIMPLE SUMMARY: Missing values are common in omics data and can arise from various causes. Imputation approaches offer a different means of handling missing data instead of utilizing only subsets of the dataset. However, the imputation of missing omics data is a challenging task. Advanced imputation...
Autores principales: | Huang, Lei, Song, Meng, Shen, Hui, Hong, Huixiao, Gong, Ping, Deng, Hong-Wen, Zhang, Chaoyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604785/ https://www.ncbi.nlm.nih.gov/pubmed/37887023 http://dx.doi.org/10.3390/biology12101313 |
Ejemplares similares
-
An autoencoder-based deep learning method for genotype imputation
por: Song, Meng, et al.
Publicado: (2022) -
A Review of Integrative Imputation for Multi-Omics Datasets
por: Song, Meng, et al.
Publicado: (2020) -
An integrative imputation method based on multi-omics datasets
por: Lin, Dongdong, et al.
Publicado: (2016) -
omicsMIC: a Comprehensive Benchmarking Platform for Robust Comparison of Imputation Methods in Mass Spectrometry-based Omics Data
por: Lin, Weiqiang, et al.
Publicado: (2023) -
AUTOSURV: INTERPRETABLE DEEP LEARNING FRAMEWORK FOR CANCER SURVIVAL ANALYSIS INCORPORATING CLINICAL AND MULTI-OMICS DATA
por: Jiang, Lindong, et al.
Publicado: (2023)