Cargando…
An Improved Canonical Correlation Analysis for EEG Inter-Band Correlation Extraction
(1) Background: Emotion recognition based on EEG signals is a rapidly growing and promising research field in affective computing. However, traditional methods have focused on single-channel features that reflect time-domain or frequency-domain information of the EEG, as well as bi-channel features...
Autores principales: | Wang, Zishan, Huang, Ruqiang, Yan, Ye, Luo, Zhiguo, Zhao, Shaokai, Wang, Bei, Jin, Jing, Xie, Liang, Yin, Erwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604862/ https://www.ncbi.nlm.nih.gov/pubmed/37892930 http://dx.doi.org/10.3390/bioengineering10101200 |
Ejemplares similares
-
The increasing instance of negative emotion reduce the performance of emotion recognition
por: Wang, Xiaomin, et al.
Publicado: (2023) -
Data Augmentation: Using Channel-Level Recombination to Improve Classification Performance for Motor Imagery EEG
por: Pei, Yu, et al.
Publicado: (2021) -
Real-Time EEG Signal Enhancement Using Canonical Correlation Analysis and Gaussian Mixture Clustering
por: Lin, Chin-Teng, et al.
Publicado: (2018) -
Inter-subject correlations of EEG reflect subjective arousal and acoustic features of music
por: Ueno, Fuyu, et al.
Publicado: (2023) -
Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal
por: Roy, Vandana, et al.
Publicado: (2017)