Cargando…
Development of a Machine Learning Model for Predicting Weaning Outcomes Based Solely on Continuous Ventilator Parameters during Spontaneous Breathing Trials
Discontinuing mechanical ventilation remains challenging. We developed a machine learning model to predict weaning outcomes using only continuous monitoring parameters obtained from ventilators during spontaneous breathing trials (SBTs). Patients who received mechanical ventilation in the medical in...
Autores principales: | Park, Ji Eun, Kim, Do Young, Park, Ji Won, Jung, Yun Jung, Lee, Keu Sung, Park, Joo Hun, Sheen, Seung Soo, Park, Kwang Joo, Sunwoo, Myung Hoon, Chung, Wou Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604888/ https://www.ncbi.nlm.nih.gov/pubmed/37892893 http://dx.doi.org/10.3390/bioengineering10101163 |
Ejemplares similares
-
Biosignal-Based Digital Biomarkers for Prediction of Ventilator Weaning Success
por: Park, Ji Eun, et al.
Publicado: (2021) -
The Significance of Sedation Control in Patients Receiving Mechanical Ventilation
por: Jung, Yun Jung, et al.
Publicado: (2012) -
Interferon-γ-Inducible Chemokines as Prognostic Markers for Lung Cancer
por: Lee, Keu-Sung, et al.
Publicado: (2021) -
TB Antigen-Stimulated CXCR3 Ligand Assay for Diagnosis of Tuberculous Lymphadenitis
por: Chung, Wou-Young, et al.
Publicado: (2021) -
The Significance of Caspase-Cleaved Cytokeratin 18 in Pleural Effusion
por: Lee, Keu Sung, et al.
Publicado: (2014)