Cargando…
Ceph-Net: automatic detection of cephalometric landmarks on scanned lateral cephalograms from children and adolescents using an attention-based stacked regression network
BACKGROUND: The success of cephalometric analysis depends on the accurate detection of cephalometric landmarks on scanned lateral cephalograms. However, manual cephalometric analysis is time-consuming and can cause inter- and intra-observer variability. The purpose of this study was to automatically...
Autores principales: | Yang, Su, Song, Eun Sun, Lee, Eun Seung, Kang, Se-Ryong, Yi, Won-Jin, Lee, Seung-Pyo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604948/ https://www.ncbi.nlm.nih.gov/pubmed/37884918 http://dx.doi.org/10.1186/s12903-023-03452-7 |
Ejemplares similares
-
Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms
por: Lindner, Claudia, et al.
Publicado: (2016) -
Author Correction: Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms
por: Lindner, Claudia, et al.
Publicado: (2021) -
Benefits of lateral cephalogram during landmark identification on posteroanterior cephalograms
por: Hwang, Sel-Ae, et al.
Publicado: (2019) -
Comparative Evaluation of CephNinja for Android and NemoCeph for Computer for Cephalometric Analysis: A Study to Evaluate the Diagnostic Performance of CephNinja for Cephalometric Analysis
por: Kumar, Mukesh, et al.
Publicado: (2020) -
A fully deep learning model for the automatic identification of cephalometric landmarks
por: Kim, Young Hyun, et al.
Publicado: (2021)