Cargando…
Real-Time Classification of Motor Imagery Using Dynamic Window-Level Granger Causality Analysis of fMRI Data
This article presents a method for extracting neural signal features to identify the imagination of left- and right-hand grasping movements. A functional magnetic resonance imaging (fMRI) experiment is employed to identify four brain regions with significant activations during motor imagery (MI) and...
Autores principales: | Liu, Tianyuan, Li, Bao, Zhang, Chi, Chen, Panpan, Zhao, Weichen, Yan, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604978/ https://www.ncbi.nlm.nih.gov/pubmed/37891775 http://dx.doi.org/10.3390/brainsci13101406 |
Ejemplares similares
-
Increasing fMRI Sampling Rate Improves Granger Causality Estimates
por: Lin, Fa-Hsuan, et al.
Publicado: (2014) -
Is Granger Causality a Viable Technique for Analyzing fMRI Data?
por: Wen, Xiaotong, et al.
Publicado: (2013) -
Correction: Increasing fMRI Sampling Rate Improves Granger Causality Estimates
Publicado: (2014) -
Altered Effective Connectivity of the Primary Motor Cortex in Stroke: A Resting-State fMRI Study with Granger Causality Analysis
por: Zhao, Zhiyong, et al.
Publicado: (2016) -
Measuring Granger Causality between Cortical Regions from Voxelwise fMRI BOLD Signals with LASSO
por: Tang, Wei, et al.
Publicado: (2012)