Cargando…
Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes
Artificial intelligence (AI) approaches in cancer analysis typically utilize a ‘one-size-fits-all’ methodology characterizing average patient responses. This manner neglects the diverse conditions in the pancancer and cancer subtypes of individual patients, resulting in suboptimal outcomes in diagno...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605059/ https://www.ncbi.nlm.nih.gov/pubmed/37889117 http://dx.doi.org/10.1093/bib/bbad378 |
_version_ | 1785126982940360704 |
---|---|
author | Lu, Yuxing Peng, Rui Dong, Lingkai Xia, Kun Wu, Renjie Xu, Shuai Wang, Jinzhuo |
author_facet | Lu, Yuxing Peng, Rui Dong, Lingkai Xia, Kun Wu, Renjie Xu, Shuai Wang, Jinzhuo |
author_sort | Lu, Yuxing |
collection | PubMed |
description | Artificial intelligence (AI) approaches in cancer analysis typically utilize a ‘one-size-fits-all’ methodology characterizing average patient responses. This manner neglects the diverse conditions in the pancancer and cancer subtypes of individual patients, resulting in suboptimal outcomes in diagnosis and treatment. To overcome this limitation, we shift from a blanket application of statistics to a focus on the explicit recognition of patient-specific abnormalities. Our objective is to use multiomics data to empower clinicians with personalized molecular descriptions that allow for customized diagnosis and interventions. Here, we propose a highly trustworthy multiomics learning (HTML) framework that employs multiomics self-adaptive dynamic learning to process each sample with data-dependent architectures and computational flows, ensuring personalized and trustworthy patient-centering of cancer diagnosis and prognosis. Extensive testing on a 33-type pancancer dataset and 12 cancer subtype datasets underscored the superior performance of HTML compared with static-architecture-based methods. Our findings also highlighting the potential of HTML in elucidating complex biological pathogenesis and paving the way for improved patient-specific care in cancer treatment. |
format | Online Article Text |
id | pubmed-10605059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-106050592023-10-28 Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes Lu, Yuxing Peng, Rui Dong, Lingkai Xia, Kun Wu, Renjie Xu, Shuai Wang, Jinzhuo Brief Bioinform Problem Solving Protocol Artificial intelligence (AI) approaches in cancer analysis typically utilize a ‘one-size-fits-all’ methodology characterizing average patient responses. This manner neglects the diverse conditions in the pancancer and cancer subtypes of individual patients, resulting in suboptimal outcomes in diagnosis and treatment. To overcome this limitation, we shift from a blanket application of statistics to a focus on the explicit recognition of patient-specific abnormalities. Our objective is to use multiomics data to empower clinicians with personalized molecular descriptions that allow for customized diagnosis and interventions. Here, we propose a highly trustworthy multiomics learning (HTML) framework that employs multiomics self-adaptive dynamic learning to process each sample with data-dependent architectures and computational flows, ensuring personalized and trustworthy patient-centering of cancer diagnosis and prognosis. Extensive testing on a 33-type pancancer dataset and 12 cancer subtype datasets underscored the superior performance of HTML compared with static-architecture-based methods. Our findings also highlighting the potential of HTML in elucidating complex biological pathogenesis and paving the way for improved patient-specific care in cancer treatment. Oxford University Press 2023-10-26 /pmc/articles/PMC10605059/ /pubmed/37889117 http://dx.doi.org/10.1093/bib/bbad378 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Problem Solving Protocol Lu, Yuxing Peng, Rui Dong, Lingkai Xia, Kun Wu, Renjie Xu, Shuai Wang, Jinzhuo Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes |
title | Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes |
title_full | Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes |
title_fullStr | Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes |
title_full_unstemmed | Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes |
title_short | Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes |
title_sort | multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes |
topic | Problem Solving Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605059/ https://www.ncbi.nlm.nih.gov/pubmed/37889117 http://dx.doi.org/10.1093/bib/bbad378 |
work_keys_str_mv | AT luyuxing multiomicsdynamiclearningenablespersonalizeddiagnosisandprognosisforpancancerandcancersubtypes AT pengrui multiomicsdynamiclearningenablespersonalizeddiagnosisandprognosisforpancancerandcancersubtypes AT donglingkai multiomicsdynamiclearningenablespersonalizeddiagnosisandprognosisforpancancerandcancersubtypes AT xiakun multiomicsdynamiclearningenablespersonalizeddiagnosisandprognosisforpancancerandcancersubtypes AT wurenjie multiomicsdynamiclearningenablespersonalizeddiagnosisandprognosisforpancancerandcancersubtypes AT xushuai multiomicsdynamiclearningenablespersonalizeddiagnosisandprognosisforpancancerandcancersubtypes AT wangjinzhuo multiomicsdynamiclearningenablespersonalizeddiagnosisandprognosisforpancancerandcancersubtypes |