Cargando…
Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes
Artificial intelligence (AI) approaches in cancer analysis typically utilize a ‘one-size-fits-all’ methodology characterizing average patient responses. This manner neglects the diverse conditions in the pancancer and cancer subtypes of individual patients, resulting in suboptimal outcomes in diagno...
Autores principales: | Lu, Yuxing, Peng, Rui, Dong, Lingkai, Xia, Kun, Wu, Renjie, Xu, Shuai, Wang, Jinzhuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605059/ https://www.ncbi.nlm.nih.gov/pubmed/37889117 http://dx.doi.org/10.1093/bib/bbad378 |
Ejemplares similares
-
Privacy preserving validation for multiomic prediction models
por: Ahmed, Talal, et al.
Publicado: (2022) -
Multiomics integration-based molecular characterizations of COVID-19
por: Li, Chuan-Xing, et al.
Publicado: (2021) -
Hierarchical cell-type identifier accurately distinguishes immune-cell subtypes enabling precise profiling of tissue microenvironment with single-cell RNA-sequencing
por: Lee, Joongho, et al.
Publicado: (2023) -
Scoring personalized molecular portraits identify Systemic Lupus Erythematosus subtypes and predict individualized drug responses, symptomatology and disease progression
por: Toro-Domínguez, Daniel, et al.
Publicado: (2022) -
DLRAPom: a hybrid pipeline of Optimized XGBoost-guided integrative multiomics analysis for identifying targetable disease-related lncRNA–miRNA–mRNA regulatory axes
por: Shen, Chen, et al.
Publicado: (2022)