Cargando…

Analysis of different plant- and animal-based dietary patterns and their relationship with serum uric acid levels in Chinese adults

BACKGROUND: Dietary patterns play an important role in regulating serum uric acid levels in the body, but evidence for the association between different kinds of plant-based and animal-based dietary patterns and individual serum uric acid levels is scarce and inconsistent. METHODS: We analyzed data...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Danhui, Feng, Jin, Zhou, Yangzilin, Li, Honggang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605343/
https://www.ncbi.nlm.nih.gov/pubmed/37891672
http://dx.doi.org/10.1186/s12937-023-00885-2
Descripción
Sumario:BACKGROUND: Dietary patterns play an important role in regulating serum uric acid levels in the body, but evidence for the association between different kinds of plant-based and animal-based dietary patterns and individual serum uric acid levels is scarce and inconsistent. METHODS: We analyzed data from the sixth wave of the China Health and Nutrition Survey. The plant-based diet of 7,806 participants was determined using three consecutive 24-hour dietary recalls, and latent profile analysis was used to identify dietary patterns among participants. Serum uric acid levels were analyzed using the enzymatic colorimetric method. The association between intakes of different types of dietary pattern and individual serum uric acid levels was analyzed using linear regression analysis, after adjusting for confounding variables. RESULTS: We identified three types of plant-based dietary patterns, namely, low tuber starches and vegetable plant-based diet (LTVP), high cereal, tuber starches and vegetable plant-based diet (HCTVP), and high legume and fruit plant-based diet (HLFP). We also identified three types of animal-based dietary patterns, namely, high milk and egg animal-based diet (HMiEA), low egg and fish animal-based diet, and high meat and fish animal-based diet (HMeFA). Significant coefficients for participant serum uric acid levels were observed for the HCTVP diet (β = −0.022, P = 0.031) and HMeFA diet (β = 0.061, P < 0.001). The median intake of foods in the HCTVP diet was as follows: cereals and cereal products, 444.83 g/d; tubers and starch products, 166.67 g/d; dried legumes and legume products, 8.33 g/d; vegetables and vegetable products, 333.33 g/d; and fruits and fruit products, 0 g/d. The median intake of foods in the HMeFA diet was as follows: meat and meat products, 73.33 g/d; poultry and poultry products, 0 g/d; milk and milk products, 0 g/d; eggs and egg products, 26.67 g/d; and fish, shellfish, and mollusks, 180.00 g/d. CONCLUSION: We showed that individual serum uric acid levels (1) might decrease under the plant-based HCTVP diet, (2) might increase under the animal-based HMeFA diet, (3) might not decrease under the plant-based HLFP diet, and (4) might not increase under the animal-based HMiEA diet. Further studies are needed to confirm these associations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12937-023-00885-2.