Cargando…
Detection of ASD Children through Deep-Learning Application of fMRI
Autism spectrum disorder (ASD) necessitates prompt diagnostic scrutiny to enable immediate, targeted interventions. This study unveils an advanced convolutional-neural-network (CNN) algorithm that was meticulously engineered to examine resting-state functional magnetic resonance imaging (fMRI) for e...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605350/ https://www.ncbi.nlm.nih.gov/pubmed/37892317 http://dx.doi.org/10.3390/children10101654 |
_version_ | 1785127051808735232 |
---|---|
author | Feng, Min Xu, Juncai |
author_facet | Feng, Min Xu, Juncai |
author_sort | Feng, Min |
collection | PubMed |
description | Autism spectrum disorder (ASD) necessitates prompt diagnostic scrutiny to enable immediate, targeted interventions. This study unveils an advanced convolutional-neural-network (CNN) algorithm that was meticulously engineered to examine resting-state functional magnetic resonance imaging (fMRI) for early ASD detection in pediatric cohorts. The CNN architecture amalgamates convolutional, pooling, batch-normalization, dropout, and fully connected layers, optimized for high-dimensional data interpretation. Rigorous preprocessing yielded 22,176 two-dimensional echo planar samples from 126 subjects (56 ASD, 70 controls) who were sourced from the Autism Brain Imaging Data Exchange (ABIDE I) repository. The model, trained on 17,740 samples across 50 epochs, demonstrated unparalleled diagnostic metrics—accuracy of 99.39%, recall of 98.80%, precision of 99.85%, and an F1 score of 99.32%—and thereby eclipsed extant computational methodologies. Feature map analyses substantiated the model’s hierarchical feature extraction capabilities. This research elucidates a deep learning framework for computer-assisted ASD screening via fMRI, with transformative implications for early diagnosis and intervention. |
format | Online Article Text |
id | pubmed-10605350 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106053502023-10-28 Detection of ASD Children through Deep-Learning Application of fMRI Feng, Min Xu, Juncai Children (Basel) Article Autism spectrum disorder (ASD) necessitates prompt diagnostic scrutiny to enable immediate, targeted interventions. This study unveils an advanced convolutional-neural-network (CNN) algorithm that was meticulously engineered to examine resting-state functional magnetic resonance imaging (fMRI) for early ASD detection in pediatric cohorts. The CNN architecture amalgamates convolutional, pooling, batch-normalization, dropout, and fully connected layers, optimized for high-dimensional data interpretation. Rigorous preprocessing yielded 22,176 two-dimensional echo planar samples from 126 subjects (56 ASD, 70 controls) who were sourced from the Autism Brain Imaging Data Exchange (ABIDE I) repository. The model, trained on 17,740 samples across 50 epochs, demonstrated unparalleled diagnostic metrics—accuracy of 99.39%, recall of 98.80%, precision of 99.85%, and an F1 score of 99.32%—and thereby eclipsed extant computational methodologies. Feature map analyses substantiated the model’s hierarchical feature extraction capabilities. This research elucidates a deep learning framework for computer-assisted ASD screening via fMRI, with transformative implications for early diagnosis and intervention. MDPI 2023-10-05 /pmc/articles/PMC10605350/ /pubmed/37892317 http://dx.doi.org/10.3390/children10101654 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Feng, Min Xu, Juncai Detection of ASD Children through Deep-Learning Application of fMRI |
title | Detection of ASD Children through Deep-Learning Application of fMRI |
title_full | Detection of ASD Children through Deep-Learning Application of fMRI |
title_fullStr | Detection of ASD Children through Deep-Learning Application of fMRI |
title_full_unstemmed | Detection of ASD Children through Deep-Learning Application of fMRI |
title_short | Detection of ASD Children through Deep-Learning Application of fMRI |
title_sort | detection of asd children through deep-learning application of fmri |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605350/ https://www.ncbi.nlm.nih.gov/pubmed/37892317 http://dx.doi.org/10.3390/children10101654 |
work_keys_str_mv | AT fengmin detectionofasdchildrenthroughdeeplearningapplicationoffmri AT xujuncai detectionofasdchildrenthroughdeeplearningapplicationoffmri |