Cargando…
Detection of ASD Children through Deep-Learning Application of fMRI
Autism spectrum disorder (ASD) necessitates prompt diagnostic scrutiny to enable immediate, targeted interventions. This study unveils an advanced convolutional-neural-network (CNN) algorithm that was meticulously engineered to examine resting-state functional magnetic resonance imaging (fMRI) for e...
Autores principales: | Feng, Min, Xu, Juncai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605350/ https://www.ncbi.nlm.nih.gov/pubmed/37892317 http://dx.doi.org/10.3390/children10101654 |
Ejemplares similares
-
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
por: Almuqhim, Fahad, et al.
Publicado: (2021) -
rs-fMRI and machine learning for ASD diagnosis: a systematic review and meta-analysis
por: Santana, Caio Pinheiro, et al.
Publicado: (2022) -
ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data
por: Eslami, Taban, et al.
Publicado: (2019) -
Deep Learning Architecture Reduction for fMRI Data
por: Alvarez-Gonzalez, Ruben, et al.
Publicado: (2022) -
Diagnosis of Schizophrenia Based on Deep Learning Using fMRI
por: Zheng, JinChi, et al.
Publicado: (2021)