Cargando…
Deep-Ocular: Improved Transfer Learning Architecture Using Self-Attention and Dense Layers for Recognition of Ocular Diseases
It is difficult for clinicians or less-experienced ophthalmologists to detect early eye-related diseases. By hand, eye disease diagnosis is labor-intensive, prone to mistakes, and challenging because of the variety of ocular diseases such as glaucoma (GA), diabetic retinopathy (DR), cataract (CT), a...
Autores principales: | Abbas, Qaisar, Albathan, Mubarak, Altameem, Abdullah, Almakki, Riyad Saleh, Hussain, Ayyaz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605427/ https://www.ncbi.nlm.nih.gov/pubmed/37891986 http://dx.doi.org/10.3390/diagnostics13203165 |
Ejemplares similares
-
ROAST-IoT: A Novel Range-Optimized Attention Convolutional Scattered Technique for Intrusion Detection in IoT Networks
por: Mahalingam, Anandaraj, et al.
Publicado: (2023) -
Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier
por: Shaheed, Kashif, et al.
Publicado: (2023) -
Mobile-HR: An Ophthalmologic-Based Classification System for Diagnosis of Hypertensive Retinopathy Using Optimized MobileNet Architecture
por: Sajid, Muhammad Zaheer, et al.
Publicado: (2023) -
A Deep Learning Framework for the Prediction and Diagnosis of Ovarian Cancer in Pre- and Post-Menopausal Women
por: Ziyambe, Blessed, et al.
Publicado: (2023) -
CAD-ALZ: A Blockwise Fine-Tuning Strategy on Convolutional Model and Random Forest Classifier for Recognition of Multistage Alzheimer’s Disease
por: Abbas, Qaisar, et al.
Publicado: (2023)