Cargando…
Prediction of the Sleep Apnea Severity Using 2D-Convolutional Neural Networks and Respiratory Effort Signals
The high prevalence of sleep apnea and the limitations of polysomnography have prompted the investigation of strategies aimed at automated diagnosis using a restricted number of physiological measures. This study aimed to demonstrate that thoracic (THO) and abdominal (ABD) movement signals are usefu...
Autores principales: | Barroso-García, Verónica, Fernández-Poyatos, Marta, Sahelices, Benjamín, Álvarez, Daniel, Gozal, David, Hornero, Roberto, Gutiérrez-Tobal, Gonzalo C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605440/ https://www.ncbi.nlm.nih.gov/pubmed/37892008 http://dx.doi.org/10.3390/diagnostics13203187 |
Ejemplares similares
-
Wavelet Analysis of Overnight Airflow to Detect Obstructive Sleep Apnea in Children
por: Barroso-García, Verónica, et al.
Publicado: (2021) -
Bispectral Analysis of Heart Rate Variability to Characterize and Help Diagnose Pediatric Sleep Apnea
por: Martín-Montero, Adrián, et al.
Publicado: (2021) -
Wavelet analysis of oximetry recordings to assist in the automated detection of moderate-to-severe pediatric sleep apnea-hypopnea syndrome
por: Vaquerizo-Villar, Fernando, et al.
Publicado: (2018) -
Erratum: Martín-Montero et al. Bispectral Analysis of Heart Rate Variability to Characterize and Help Diagnose Pediatric Sleep Apnea. Entropy 2021, 23, 1016
por: Martín-Montero, Adrián, et al.
Publicado: (2021) -
Heart rate variability spectrum characteristics in children with sleep apnea
por: Martín-Montero, Adrián, et al.
Publicado: (2020)