Cargando…
Using LLMs and Explainable ML to Analyze Biomarkers at Single-Cell Level for Improved Understanding of Diseases
Single-cell RNA sequencing (scRNA-seq) technology has significantly advanced our understanding of the diversity of cells and how this diversity is implicated in diseases. Yet, translating these findings across various scRNA-seq datasets poses challenges due to technical variability and dataset-speci...
Autores principales: | Elsborg, Jonas, Salvatore, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605495/ https://www.ncbi.nlm.nih.gov/pubmed/37892198 http://dx.doi.org/10.3390/biom13101516 |
Ejemplares similares
-
Harnessing large language models (LLMs) for candidate gene prioritization and selection
por: Toufiq, Mohammed, et al.
Publicado: (2023) -
Harnessing the Power of Large Language Models (LLMs) for Electronic Health Records (EHRs) Optimization
por: Nashwan, Abdulqadir J, et al.
Publicado: (2023) -
Exposing influence campaigns in the age of LLMs: a behavioral-based AI approach to detecting state-sponsored trolls
por: Ezzeddine, Fatima, et al.
Publicado: (2023) -
14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon
por: Jablonka, Kevin Maik, et al.
Publicado: (2023) -
Editorial: ML and AI Safety, Effectiveness and Explainability in Healthcare
por: Benrimoh, David, et al.
Publicado: (2021)