Cargando…

Exploring the Functional Basis of Epigenetic Aging in Relation to Body Fat Phenotypes in the Norfolk Island Cohort

DNA methylation is an epigenetic factor that is modifiable and can change over a lifespan. While many studies have identified methylation sites (CpGs) related to aging, the relationship of these to gene function and age-related disease phenotypes remains unclear. This research explores this question...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Thao Van, Sutherland, Heidi G., Benton, Miles C., Haupt, Larisa M., Lea, Rodney A., Griffiths, Lyn R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605526/
https://www.ncbi.nlm.nih.gov/pubmed/37886940
http://dx.doi.org/10.3390/cimb45100497
_version_ 1785127095431593984
author Cao, Thao Van
Sutherland, Heidi G.
Benton, Miles C.
Haupt, Larisa M.
Lea, Rodney A.
Griffiths, Lyn R.
author_facet Cao, Thao Van
Sutherland, Heidi G.
Benton, Miles C.
Haupt, Larisa M.
Lea, Rodney A.
Griffiths, Lyn R.
author_sort Cao, Thao Van
collection PubMed
description DNA methylation is an epigenetic factor that is modifiable and can change over a lifespan. While many studies have identified methylation sites (CpGs) related to aging, the relationship of these to gene function and age-related disease phenotypes remains unclear. This research explores this question by testing for the conjoint association of age-related CpGs with gene expression and the relation of these to body fat phenotypes. The study included blood-based gene transcripts and intragenic CpG methylation data from Illumina 450 K arrays in 74 healthy adults from the Norfolk Island population. First, a series of regression analyses were performed to detect associations between gene transcript level and intragenic CpGs and their conjoint relationship with age. Second, we explored how these age-related expression CpGs (eCpGs) correlated with obesity-related phenotypes, including body fat percentage, body mass index, and waist-to-hip ratio. We identified 35 age-related eCpGs associated with age. Of these, ten eCpGs were associated with at least one body fat phenotype. Collagen Type XI Alpha 2 Chain (COL11A2), Complement C1s (C1s), and four and a half LIM domains 2 (FHL2) genes were among the most significant genes with multiple eCpGs associated with both age and multiple body fat phenotypes. The COL11A2 gene contributes to the correct assembly of the extracellular matrix in maintaining the healthy structural arrangement of various components, with the C1s gene part of complement systems functioning in inflammation. Moreover, FHL2 expression was upregulated under hypermethylation in both blood and adipose tissue with aging. These results suggest new targets for future studies and require further validation to confirm the specific function of these genes on body fat regulation.
format Online
Article
Text
id pubmed-10605526
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106055262023-10-28 Exploring the Functional Basis of Epigenetic Aging in Relation to Body Fat Phenotypes in the Norfolk Island Cohort Cao, Thao Van Sutherland, Heidi G. Benton, Miles C. Haupt, Larisa M. Lea, Rodney A. Griffiths, Lyn R. Curr Issues Mol Biol Article DNA methylation is an epigenetic factor that is modifiable and can change over a lifespan. While many studies have identified methylation sites (CpGs) related to aging, the relationship of these to gene function and age-related disease phenotypes remains unclear. This research explores this question by testing for the conjoint association of age-related CpGs with gene expression and the relation of these to body fat phenotypes. The study included blood-based gene transcripts and intragenic CpG methylation data from Illumina 450 K arrays in 74 healthy adults from the Norfolk Island population. First, a series of regression analyses were performed to detect associations between gene transcript level and intragenic CpGs and their conjoint relationship with age. Second, we explored how these age-related expression CpGs (eCpGs) correlated with obesity-related phenotypes, including body fat percentage, body mass index, and waist-to-hip ratio. We identified 35 age-related eCpGs associated with age. Of these, ten eCpGs were associated with at least one body fat phenotype. Collagen Type XI Alpha 2 Chain (COL11A2), Complement C1s (C1s), and four and a half LIM domains 2 (FHL2) genes were among the most significant genes with multiple eCpGs associated with both age and multiple body fat phenotypes. The COL11A2 gene contributes to the correct assembly of the extracellular matrix in maintaining the healthy structural arrangement of various components, with the C1s gene part of complement systems functioning in inflammation. Moreover, FHL2 expression was upregulated under hypermethylation in both blood and adipose tissue with aging. These results suggest new targets for future studies and require further validation to confirm the specific function of these genes on body fat regulation. MDPI 2023-09-27 /pmc/articles/PMC10605526/ /pubmed/37886940 http://dx.doi.org/10.3390/cimb45100497 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cao, Thao Van
Sutherland, Heidi G.
Benton, Miles C.
Haupt, Larisa M.
Lea, Rodney A.
Griffiths, Lyn R.
Exploring the Functional Basis of Epigenetic Aging in Relation to Body Fat Phenotypes in the Norfolk Island Cohort
title Exploring the Functional Basis of Epigenetic Aging in Relation to Body Fat Phenotypes in the Norfolk Island Cohort
title_full Exploring the Functional Basis of Epigenetic Aging in Relation to Body Fat Phenotypes in the Norfolk Island Cohort
title_fullStr Exploring the Functional Basis of Epigenetic Aging in Relation to Body Fat Phenotypes in the Norfolk Island Cohort
title_full_unstemmed Exploring the Functional Basis of Epigenetic Aging in Relation to Body Fat Phenotypes in the Norfolk Island Cohort
title_short Exploring the Functional Basis of Epigenetic Aging in Relation to Body Fat Phenotypes in the Norfolk Island Cohort
title_sort exploring the functional basis of epigenetic aging in relation to body fat phenotypes in the norfolk island cohort
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605526/
https://www.ncbi.nlm.nih.gov/pubmed/37886940
http://dx.doi.org/10.3390/cimb45100497
work_keys_str_mv AT caothaovan exploringthefunctionalbasisofepigeneticaginginrelationtobodyfatphenotypesinthenorfolkislandcohort
AT sutherlandheidig exploringthefunctionalbasisofepigeneticaginginrelationtobodyfatphenotypesinthenorfolkislandcohort
AT bentonmilesc exploringthefunctionalbasisofepigeneticaginginrelationtobodyfatphenotypesinthenorfolkislandcohort
AT hauptlarisam exploringthefunctionalbasisofepigeneticaginginrelationtobodyfatphenotypesinthenorfolkislandcohort
AT learodneya exploringthefunctionalbasisofepigeneticaginginrelationtobodyfatphenotypesinthenorfolkislandcohort
AT griffithslynr exploringthefunctionalbasisofepigeneticaginginrelationtobodyfatphenotypesinthenorfolkislandcohort