Cargando…

Non-Invasive Continuous Optical Monitoring of Cerebral Blood Flow after Traumatic Brain Injury in Mice Using Fiber Camera-Based Speckle Contrast Optical Spectroscopy

Neurocritical care focuses on monitoring cerebral blood flow (CBF) to prevent secondary brain injuries before damage becomes irreversible. Thus, there is a critical unmet need for continuous neuromonitoring methods to quantify CBF within the vulnerable cortex continuously and non-invasively. Animal...

Descripción completa

Detalles Bibliográficos
Autores principales: Langri, Dharminder S., Sunar, Ulas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605647/
https://www.ncbi.nlm.nih.gov/pubmed/37891734
http://dx.doi.org/10.3390/brainsci13101365
Descripción
Sumario:Neurocritical care focuses on monitoring cerebral blood flow (CBF) to prevent secondary brain injuries before damage becomes irreversible. Thus, there is a critical unmet need for continuous neuromonitoring methods to quantify CBF within the vulnerable cortex continuously and non-invasively. Animal models and imaging biomarkers can provide valuable insights into the mechanisms and kinetics of head injury, as well as insights for potential treatment strategies. For this purpose, we implemented an optical technique for continuous monitoring of blood flow changes after a closed head injury in a mouse model, which is based on laser speckle contrast imaging and a fiber camera-based approach. Our results indicate a significant decrease (~10%, p-value < 0.05) in blood flow within 30 min of a closed head injury. Furthermore, the low-frequency oscillation analysis also indicated much lower power in the trauma group compared to the control group. Overall, blood flow has the potential to be a biomarker for head injuries in the early phase of a trauma, and the system is useful for continuous monitoring with the potential for clinical translation.