Cargando…
Can Whole-Body Baseline CT Radiomics Add Information to the Prediction of Best Response, Progression-Free Survival, and Overall Survival of Stage IV Melanoma Patients Receiving First-Line Targeted Therapy: A Retrospective Register Study
Background: The aim of this study was to investigate whether the combination of radiomics and clinical parameters in a machine-learning model offers additive information compared with the use of only clinical parameters in predicting the best response, progression-free survival after six months, as...
Autores principales: | Peisen, Felix, Gerken, Annika, Hering, Alessa, Dahm, Isabel, Nikolaou, Konstantin, Gatidis, Sergios, Eigentler, Thomas K., Amaral, Teresa, Moltz, Jan H., Othman, Ahmed E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605712/ https://www.ncbi.nlm.nih.gov/pubmed/37892030 http://dx.doi.org/10.3390/diagnostics13203210 |
Ejemplares similares
-
Combination of Whole-Body Baseline CT Radiomics and Clinical Parameters to Predict Response and Survival in a Stage-IV Melanoma Cohort Undergoing Immunotherapy
por: Peisen, Felix, et al.
Publicado: (2022) -
Baseline MRI-Radiomics Can Predict Overall Survival in Non-Endemic EBV-Related Nasopharyngeal Carcinoma Patients
por: Bologna, Marco, et al.
Publicado: (2020) -
A Machine learning model trained on dual-energy CT radiomics significantly improves immunotherapy response prediction for patients with stage IV melanoma
por: Brendlin, Andreas Stefan, et al.
Publicado: (2021) -
Overall Survival Prediction of Glioma Patients With Multiregional Radiomics
por: Shaheen, Asma, et al.
Publicado: (2022) -
Radiomics of rectal cancer for predicting distant metastasis and overall survival
por: Li, Mou, et al.
Publicado: (2020)