Cargando…
Steatosis Quantification on Ultrasound Images by a Deep Learning Algorithm on Patients Undergoing Weight Changes
Introduction: A deep learning algorithm to quantify steatosis from ultrasound images may change a subjective diagnosis to objective quantification. We evaluate this algorithm in patients with weight changes. Materials and Methods: Patients (N = 101) who experienced weight changes ≥ 5% were selected...
Autores principales: | Harrison, Adam P., Li, Bowen, Hsu, Tse-Hwa, Chen, Cheng-Jen, Yu, Wan-Ting, Tai, Jennifer, Lu, Le, Tai, Dar-In |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605714/ https://www.ncbi.nlm.nih.gov/pubmed/37892046 http://dx.doi.org/10.3390/diagnostics13203225 |
Ejemplares similares
-
Accurate and generalizable quantitative scoring of liver steatosis from ultrasound images via scalable deep learning
por: Li, Bowen, et al.
Publicado: (2022) -
Clinical Value of Information Entropy Compared with Deep Learning for Ultrasound Grading of Hepatic Steatosis
por: Chen, Jheng-Ru, et al.
Publicado: (2020) -
Ultrasound Assessment of Hepatic Steatosis by Using the Double Nakagami Distribution: A Feasibility Study
por: Fang, Feng, et al.
Publicado: (2020) -
Cutoff Values of Acoustic Radiation Force Impulse Two-Location Measurements in Different Etiologies of Liver Fibrosis
por: Hsu, Tse-Hwa, et al.
Publicado: (2019) -
Acoustic radiation force impulse predicts long-term outcomes in a large-scale cohort: High liver cancer, low comorbidity in hepatitis B virus
por: Tai, Jennifer, et al.
Publicado: (2023)