Cargando…
Towards Environment-Aware Fall Risk Assessment: Classifying Walking Surface Conditions Using IMU-Based Gait Data and Deep Learning
Fall risk assessment (FRA) helps clinicians make decisions about the best preventative measures to lower the risk of falls by identifying the different risks that are specific to an individual. With the development of wearable technologies such as inertial measurement units (IMUs), several free-livi...
Autor principal: | Yıldız, Abdulnasır |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605788/ https://www.ncbi.nlm.nih.gov/pubmed/37891797 http://dx.doi.org/10.3390/brainsci13101428 |
Ejemplares similares
-
Deep Learning in Gait Parameter Prediction for OA and TKA Patients Wearing IMU Sensors
por: Sharifi Renani, Mohsen, et al.
Publicado: (2020) -
Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms
por: Niswander, Wesley, et al.
Publicado: (2021) -
Verification of gait analysis method fusing camera-based pose estimation and an IMU sensor in various gait conditions
por: Yamamoto, Masataka, et al.
Publicado: (2022) -
DeepFoG: An IMU-Based Detection of Freezing of Gait Episodes in Parkinson’s Disease Patients via Deep Learning
por: Bikias, Thomas, et al.
Publicado: (2021) -
IMU-Based Joint Angle Measurement for Gait Analysis
por: Seel, Thomas, et al.
Publicado: (2014)