Cargando…

Low m6A modification-mediated upregulation of PLAC8 promotes trophoblast cell invasion and migration in preeclampsia

BACKGROUND: The main symptoms of preeclampsia (PE), a specific ailment that develops during pregnancy, are proteinuria and hypertension. The pathological root of the onset and progression of PE is widely regarded as abnormal placental trophoblast cell function. This study aimed to look into the char...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yajuan, Guo, Xiaoguang, Chen, Zhimin, Guo, Ruixia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605972/
https://www.ncbi.nlm.nih.gov/pubmed/37885015
http://dx.doi.org/10.1186/s40001-023-01442-7
Descripción
Sumario:BACKGROUND: The main symptoms of preeclampsia (PE), a specific ailment that develops during pregnancy, are proteinuria and hypertension. The pathological root of the onset and progression of PE is widely regarded as abnormal placental trophoblast cell function. This study aimed to look into the character and mechanism of Placenta-specific 8 (PLAC8) in trophoblast cell invasion and migration. METHODS: Expressions of PLAC8 and AlkB homologue 5 (ALKBH5) were examined by western blot and quantitative real-time PCR. The m6A level of PLAC8 mRNA was detected by methylated RNA Immunoprecipitation. Using Transwell experiments, cell invasion and migration were examined. The enzyme-linked immunosorbent assay was utilized to analyze the MMP-2 and MMP-9 secretion levels. RNA pull-down and RNA immunoprecipitation were conducted to detect the binding between ALKBH5 and PLAC8. RESULTS: In PE tissue and hypoxia-treated HTR-8/SVneo cells, levels of ALKBH5 and PLAC8 were increased, and PLAC8 m6A methylation levels were decreased. There was a positive correlation between PLAC8 and ALKBH5 expression in clinical tissues. In addition, overexpressing PLAC8 promoted HTR-8/SVneo cell migration and invasion, and so as the levels of MMP-2 and MMP-9; while interference with PLAC8 reduced the migration and invasion of hypoxia-treated HTR-8/SVneo cells, and so as the levels of MMP-2 and MMP-9. Moreover, the PLAC8 mRNA’s m6A modification site was GAACU (Position 1449, Site 2). Increased levels of MMP-2 and MMP-9, as well as migration and invasion of HTR-8/SVneo cells exposed to hypoxia, were all facilitated by the m6A Site2 mutation. Furthermore, ALKBH5 could bind to PLAC8, reduce its m6A modification, and promote its expression. CONCLUSION: High-expressed ALKBH5 inhibits the m6A level of PLAC8 mRNA and promotes PLAC8 expression, while PLAC8 overexpression can promote hypoxia-induced invasion and migration of HTR-8/Svneo cells, indicating its potential protective function in PE.