Cargando…
Using Visual Patient to Show Vital Sign Predictions, a Computer-Based Mixed Quantitative and Qualitative Simulation Study
Background: Machine learning can analyze vast amounts of data and make predictions for events in the future. Our group created machine learning models for vital sign predictions. To transport the information of these predictions without numbers and numerical values and make them easily usable for hu...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606017/ https://www.ncbi.nlm.nih.gov/pubmed/37892102 http://dx.doi.org/10.3390/diagnostics13203281 |
_version_ | 1785127214210088960 |
---|---|
author | Malorgio, Amos Henckert, David Schweiger, Giovanna Braun, Julia Zacharowski, Kai Raimann, Florian J. Piekarski, Florian Meybohm, Patrick Hottenrott, Sebastian Froehlich, Corinna Spahn, Donat R. Noethiger, Christoph B. Tscholl, David W. Roche, Tadzio R. |
author_facet | Malorgio, Amos Henckert, David Schweiger, Giovanna Braun, Julia Zacharowski, Kai Raimann, Florian J. Piekarski, Florian Meybohm, Patrick Hottenrott, Sebastian Froehlich, Corinna Spahn, Donat R. Noethiger, Christoph B. Tscholl, David W. Roche, Tadzio R. |
author_sort | Malorgio, Amos |
collection | PubMed |
description | Background: Machine learning can analyze vast amounts of data and make predictions for events in the future. Our group created machine learning models for vital sign predictions. To transport the information of these predictions without numbers and numerical values and make them easily usable for human caregivers, we aimed to integrate them into the Philips Visual-Patient-avatar, an avatar-based visualization of patient monitoring. Methods: We conducted a computer-based simulation study with 70 participants in 3 European university hospitals. We validated the vital sign prediction visualizations by testing their identification by anesthesiologists and intensivists. Each prediction visualization consisted of a condition (e.g., low blood pressure) and an urgency (a visual indication of the timespan in which the condition is expected to occur). To obtain qualitative user feedback, we also conducted standardized interviews and derived statements that participants later rated in an online survey. Results: The mixed logistic regression model showed 77.9% (95% CI 73.2–82.0%) correct identification of prediction visualizations (i.e., condition and urgency both correctly identified) and 93.8% (95% CI 93.7–93.8%) for conditions only (i.e., without considering urgencies). A total of 49 out of 70 participants completed the online survey. The online survey participants agreed that the prediction visualizations were fun to use (32/49, 65.3%), and that they could imagine working with them in the future (30/49, 61.2%). They also agreed that identifying the urgencies was difficult (32/49, 65.3%). Conclusions: This study found that care providers correctly identified >90% of the conditions (i.e., without considering urgencies). The accuracy of identification decreased when considering urgencies in addition to conditions. Therefore, in future development of the technology, we will focus on either only displaying conditions (without urgencies) or improving the visualizations of urgency to enhance usability for human users. |
format | Online Article Text |
id | pubmed-10606017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106060172023-10-28 Using Visual Patient to Show Vital Sign Predictions, a Computer-Based Mixed Quantitative and Qualitative Simulation Study Malorgio, Amos Henckert, David Schweiger, Giovanna Braun, Julia Zacharowski, Kai Raimann, Florian J. Piekarski, Florian Meybohm, Patrick Hottenrott, Sebastian Froehlich, Corinna Spahn, Donat R. Noethiger, Christoph B. Tscholl, David W. Roche, Tadzio R. Diagnostics (Basel) Article Background: Machine learning can analyze vast amounts of data and make predictions for events in the future. Our group created machine learning models for vital sign predictions. To transport the information of these predictions without numbers and numerical values and make them easily usable for human caregivers, we aimed to integrate them into the Philips Visual-Patient-avatar, an avatar-based visualization of patient monitoring. Methods: We conducted a computer-based simulation study with 70 participants in 3 European university hospitals. We validated the vital sign prediction visualizations by testing their identification by anesthesiologists and intensivists. Each prediction visualization consisted of a condition (e.g., low blood pressure) and an urgency (a visual indication of the timespan in which the condition is expected to occur). To obtain qualitative user feedback, we also conducted standardized interviews and derived statements that participants later rated in an online survey. Results: The mixed logistic regression model showed 77.9% (95% CI 73.2–82.0%) correct identification of prediction visualizations (i.e., condition and urgency both correctly identified) and 93.8% (95% CI 93.7–93.8%) for conditions only (i.e., without considering urgencies). A total of 49 out of 70 participants completed the online survey. The online survey participants agreed that the prediction visualizations were fun to use (32/49, 65.3%), and that they could imagine working with them in the future (30/49, 61.2%). They also agreed that identifying the urgencies was difficult (32/49, 65.3%). Conclusions: This study found that care providers correctly identified >90% of the conditions (i.e., without considering urgencies). The accuracy of identification decreased when considering urgencies in addition to conditions. Therefore, in future development of the technology, we will focus on either only displaying conditions (without urgencies) or improving the visualizations of urgency to enhance usability for human users. MDPI 2023-10-23 /pmc/articles/PMC10606017/ /pubmed/37892102 http://dx.doi.org/10.3390/diagnostics13203281 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Malorgio, Amos Henckert, David Schweiger, Giovanna Braun, Julia Zacharowski, Kai Raimann, Florian J. Piekarski, Florian Meybohm, Patrick Hottenrott, Sebastian Froehlich, Corinna Spahn, Donat R. Noethiger, Christoph B. Tscholl, David W. Roche, Tadzio R. Using Visual Patient to Show Vital Sign Predictions, a Computer-Based Mixed Quantitative and Qualitative Simulation Study |
title | Using Visual Patient to Show Vital Sign Predictions, a Computer-Based Mixed Quantitative and Qualitative Simulation Study |
title_full | Using Visual Patient to Show Vital Sign Predictions, a Computer-Based Mixed Quantitative and Qualitative Simulation Study |
title_fullStr | Using Visual Patient to Show Vital Sign Predictions, a Computer-Based Mixed Quantitative and Qualitative Simulation Study |
title_full_unstemmed | Using Visual Patient to Show Vital Sign Predictions, a Computer-Based Mixed Quantitative and Qualitative Simulation Study |
title_short | Using Visual Patient to Show Vital Sign Predictions, a Computer-Based Mixed Quantitative and Qualitative Simulation Study |
title_sort | using visual patient to show vital sign predictions, a computer-based mixed quantitative and qualitative simulation study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606017/ https://www.ncbi.nlm.nih.gov/pubmed/37892102 http://dx.doi.org/10.3390/diagnostics13203281 |
work_keys_str_mv | AT malorgioamos usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT henckertdavid usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT schweigergiovanna usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT braunjulia usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT zacharowskikai usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT raimannflorianj usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT piekarskiflorian usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT meybohmpatrick usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT hottenrottsebastian usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT froehlichcorinna usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT spahndonatr usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT noethigerchristophb usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT tscholldavidw usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy AT rochetadzior usingvisualpatienttoshowvitalsignpredictionsacomputerbasedmixedquantitativeandqualitativesimulationstudy |