Cargando…

Complex Genomic Rearrangements Involving ETV6::ABL1 Gene Fusion in an Individual with Myeloid Neoplasm

ETV6::ABL1 gene fusion is a rare recurrent genomic rearrangement associated with hematologic malignancies, and frequently occurs with additional anomalies. Due to the opposite chromosome orientations of the ETV6 and ABL1 genes, an oncogenic in-frame ETV6::ABL1 gene fusion cannot be formed by a simpl...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Zhongxia, Smith, Catherine, Shah, Neil P., Yu, Jingwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606058/
https://www.ncbi.nlm.nih.gov/pubmed/37895201
http://dx.doi.org/10.3390/genes14101851
Descripción
Sumario:ETV6::ABL1 gene fusion is a rare recurrent genomic rearrangement associated with hematologic malignancies, and frequently occurs with additional anomalies. Due to the opposite chromosome orientations of the ETV6 and ABL1 genes, an oncogenic in-frame ETV6::ABL1 gene fusion cannot be formed by a simple translocation. The molecular mechanism of the ETV6::ABL1 fusion and the significance of co-occurring anomalies are not fully understood. We characterized genomic alterations in an individual with ETV6::ABL1 gene-fusion-positive myeloid neoplasm using various genomic technologies. Our findings uncovered a molecular mechanism of the ETV6::ABL1 fusion, in which a paracentric inversion within the short arm of chromosome 12 (12p) and a translocation between the long arm of a chromosome 9 and the 12p with the inversion were involved. In addition, we detected multiple additional anomalies in the individual, and our findings suggested that the ETV6::ABL1 fusion occurred as a secondary event in a subset of cells with the additional anomalies. We speculate that the additional anomalies may predispose to further pathogenic changes, including ETV6::ABL1 fusion, leading to neoplastic transformation.