Cargando…
State Space Modeling of Event Count Time Series
This paper proposes a class of algorithms for analyzing event count time series, based on state space modeling and Kalman filtering. While the dynamics of the state space model is kept Gaussian and linear, a nonlinear observation function is chosen. In order to estimate the states, an iterated exten...
Autores principales: | Moontaha, Sidratul, Arnrich, Bert, Galka, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606130/ https://www.ncbi.nlm.nih.gov/pubmed/37895494 http://dx.doi.org/10.3390/e25101372 |
Ejemplares similares
-
Online Learning for Wearable EEG-Based Emotion Classification
por: Moontaha, Sidratul, et al.
Publicado: (2023) -
Food Choices after Cognitive Load: An Affective Computing Approach
por: Kappattanavar, Arpita Mallikarjuna, et al.
Publicado: (2023) -
State space modeling of time series
por: Aoki, Masanao
Publicado: (1990) -
State space modeling of time series
por: Aoki, Masanao
Publicado: (1987) -
Count Data Time Series Modelling in Julia—The CountTimeSeries.jl Package and Applications
por: Stapper, Manuel
Publicado: (2021)