Cargando…
New Construction of Asynchronous Channel Hopping Sequences in Cognitive Radio Networks
The channel-hopping-based rendezvous is essential to alleviate the problem of under-utilization and scarcity of the spectrum in cognitive radio networks. It dynamically allows unlicensed secondary users to schedule rendezvous channels using the assigned hopping sequence to guarantee the self-organiz...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606140/ https://www.ncbi.nlm.nih.gov/pubmed/37895594 http://dx.doi.org/10.3390/e25101473 |
Sumario: | The channel-hopping-based rendezvous is essential to alleviate the problem of under-utilization and scarcity of the spectrum in cognitive radio networks. It dynamically allows unlicensed secondary users to schedule rendezvous channels using the assigned hopping sequence to guarantee the self-organization property in a limited time. In this paper, we use the interleaving technique to cleverly construct a set of asynchronous channel-hopping sequences consisting of d sequences of period [Formula: see text] with flexible parameters, which can generate sequences of different lengths. By this advantage, the new designed CHSs can be used to adapt to the demands of various communication scenarios. Furthermore, we focus on the improved maximum-time-to-rendezvous and maximum-first-time-to-rendezvous performance of the new construction compared to the prior research at the same sequence length. The new channel-hopping sequences ensure that rendezvous occurs between any two sequences and the rendezvous times are random and unpredictable when using licensed channels under asynchronous access, although the full degree-of-rendezvous is not satisfied. Our simulation results show that the new construction is more balanced and unpredictable between the maximum-time-to-rendezvous and the mean and variance of time-to-rendezvous. |
---|