Cargando…

Genome-Wide Identification and Expression Analysis of the MADS Gene Family in Tulips (Tulipa gesneriana)

To investigate the cold response mechanism and low temperature regulation of flowering in tulips, this study identified 32 MADS-box transcription factor family members in tulips based on full-length transcriptome sequencing, named TgMADS1-TgMADS32. Phylogenetic analysis revealed that these genes can...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Jiaojiao, Qu, Lianwei, Xing, Guimei, Liu, Zhenlei, Lu, Xiaochun, Han, Xiaori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606154/
https://www.ncbi.nlm.nih.gov/pubmed/37895323
http://dx.doi.org/10.3390/genes14101974
Descripción
Sumario:To investigate the cold response mechanism and low temperature regulation of flowering in tulips, this study identified 32 MADS-box transcription factor family members in tulips based on full-length transcriptome sequencing, named TgMADS1-TgMADS32. Phylogenetic analysis revealed that these genes can be divided into two classes: type I and type II. Structural analysis showed that TgMADS genes from different subfamilies have a similar distribution of conserved motifs. Quantitative real-time PCR results demonstrated that some TgMADS genes (e.g., TgMADS3, TgMADS15, TgMADS16, and TgMADS19) were significantly upregulated in buds and stems under cold conditions, implying their potential involvement in the cold response of tulips. In summary, this study systematically identified MADS family members in tulips and elucidated their evolutionary relationships, gene structures, and cold-responsive expression patterns, laying the foundation for further elucidating the roles of these transcription factors in flowering and the cold adaptability of tulips.