Cargando…

A Transformer-Based Channel Estimation Method for OTFS Systems

Orthogonal time frequency space (OTFS) is a novel modulation scheme that enables reliable communication in high-mobility environments. In this paper, we propose a Transformer-based channel estimation method for OTFS systems. Initially, the threshold method is utilized to obtain preliminary channel e...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Teng, Lv, Jiebiao, Zhou, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606224/
https://www.ncbi.nlm.nih.gov/pubmed/37895544
http://dx.doi.org/10.3390/e25101423
Descripción
Sumario:Orthogonal time frequency space (OTFS) is a novel modulation scheme that enables reliable communication in high-mobility environments. In this paper, we propose a Transformer-based channel estimation method for OTFS systems. Initially, the threshold method is utilized to obtain preliminary channel estimation results. To further enhance the channel estimation, we leverage the inherent temporal correlation between channels, and a new method of channel response prediction is performed. To enhance the accuracy of the preliminary results, we utilize a specialized Transformer neural network designed for processing time series data for refinement. The simulation results demonstrate that our proposed scheme outperforms the threshold method and other deep learning (DL) methods in terms of normalized mean squared error and bit error rate. Additionally, the temporal complexity and spatial complexity of different DL models are compared. The results indicate that our proposed algorithm achieves superior accuracy while maintaining an acceptable computational complexity.