Cargando…
Optimizing Inference Distribution for Efficient Kidney Tumor Segmentation Using a UNet-PWP Deep-Learning Model with XAI on CT Scan Images
Kidney tumors represent a significant medical challenge, characterized by their often-asymptomatic nature and the need for early detection to facilitate timely and effective intervention. Although neural networks have shown great promise in disease prediction, their computational demands have limite...
Autores principales: | Rao, P. Kiran, Chatterjee, Subarna, Janardhan, M., Nagaraju, K., Khan, Surbhi Bhatia, Almusharraf, Ahlam, Alharbe, Abdullah I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606269/ https://www.ncbi.nlm.nih.gov/pubmed/37892065 http://dx.doi.org/10.3390/diagnostics13203244 |
Ejemplares similares
-
Weight Pruning-UNet: Weight Pruning UNet with Depth-wise Separable Convolutions for Semantic Segmentation of Kidney Tumors
por: Rao, Patike Kiran, et al.
Publicado: (2022) -
Fusion of Graph and Tabular Deep Learning Models for Predicting Chronic Kidney Disease
por: Rao, Patike Kiran, et al.
Publicado: (2023) -
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
por: Bougourzi, Fares, et al.
Publicado: (2023) -
ADID-UNET—a segmentation model for COVID-19 infection from lung CT scans
por: Joseph Raj, Alex Noel, et al.
Publicado: (2021) -
Lung and Infection CT-Scan-Based Segmentation with 3D UNet Architecture and Its Modification
por: Asnawi, Mohammad Hamid, et al.
Publicado: (2023)