Cargando…

Comprehensive Comparative Analyses of Aspidistra Chloroplast Genomes: Insights into Interspecific Plastid Diversity and Phylogeny

Limestone karsts are renowned for extremely high species richness and endemism. Aspidistra (Asparagaceae) is among the highly diversified genera distributed in karst areas, making it an ideal group for studying the evolutionary mechanisms of karst plants. The taxonomy and identification of Aspidistr...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Jie, Lu, Zhaocen, Lin, Chunrui, Xu, Weibin, Liu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606303/
https://www.ncbi.nlm.nih.gov/pubmed/37895243
http://dx.doi.org/10.3390/genes14101894
Descripción
Sumario:Limestone karsts are renowned for extremely high species richness and endemism. Aspidistra (Asparagaceae) is among the highly diversified genera distributed in karst areas, making it an ideal group for studying the evolutionary mechanisms of karst plants. The taxonomy and identification of Aspidistra species are mainly based on their specialized and diverse floral structures. Aspidistra plants have inconspicuous flowers, and the similarity in vegetative morphology often leads to difficulties in species discrimination. Chloroplast genomes possess variable genetic information and offer the potential for interspecies identification. However, as yet there is little information about the interspecific diversity and evolution of the plastid genomes of Aspidistra. In this study, we reported chloroplast (cp) genomes of seven Aspidistra species (A. crassifila, A. dolichanthera, A. erecta, A. longgangensis, A. minutiflora, A. nankunshanensis, and A. retusa). These seven highly-conserved plastid genomes all have a typical quartile structure and include a total of 113 unique genes, comprising 79 protein-coding genes, 4 rRNA genes and 30 tRNA genes. Additionally, we conducted a comprehensive comparative analysis of Aspidistra cp genomes. We identified eight divergent hotspot regions (trnC-GCA-petN, trnE-UUC-psbD, accD-psaI, petA-psbJ, rpl20-rps12, rpl36-rps8, ccsA-ndhD and rps15-ycf1) that serve as potential molecular markers. Our newly generated Aspidistra plastomes enrich the resources of plastid genomes of karst plants, and an investigation into the plastome diversity offers novel perspectives on the taxonomy, phylogeny and evolution of Aspidistra species.