Cargando…
TURBO: The Swiss Knife of Auto-Encoders
We present a novel information-theoretic framework, termed as TURBO, designed to systematically analyse and generalise auto-encoding methods. We start by examining the principles of information bottleneck and bottleneck-based networks in the auto-encoding setting and identifying their inherent limit...
Autores principales: | Quétant, Guillaume, Belousov, Yury, Kinakh, Vitaliy, Voloshynovskiy, Slava |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606332/ https://www.ncbi.nlm.nih.gov/pubmed/37895592 http://dx.doi.org/10.3390/e25101471 |
Ejemplares similares
-
Privacy-Preserving Image Template Sharing Using Contrastive Learning
por: Rezaeifar, Shideh, et al.
Publicado: (2022) -
Turbo: A Physical-Minded Approach to Generalized Autoencoders
por: Voloshynovskiy, Svyatoslav
Publicado: (2023) -
Transformer-CNN: Swiss knife for QSAR modeling and interpretation
por: Karpov, Pavel, et al.
Publicado: (2020) -
Jasmonate: the Swiss army knife in the plant’s pocket
por: Zhu, Ziqiang
Publicado: (2023) -
CXCL14: the Swiss army knife chemokine
por: Benarafa, Charaf, et al.
Publicado: (2015)