Cargando…
Dynamic Semi-Supervised Federated Learning Fault Diagnosis Method Based on an Attention Mechanism
In cases where a client suffers from completely unlabeled data, unsupervised learning has difficulty achieving an accurate fault diagnosis. Semi-supervised federated learning with the ability for interaction between a labeled client and an unlabeled client has been developed to overcome this difficu...
Autores principales: | Liu, Shun, Zhou, Funa, Tang, Shanjie, Hu, Xiong, Wang, Chaoge, Wang, Tianzhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606357/ https://www.ncbi.nlm.nih.gov/pubmed/37895591 http://dx.doi.org/10.3390/e25101470 |
Ejemplares similares
-
A Multiscale Recursive Attention Gate Federation Method for Multiple Working Conditions Fault Diagnosis
por: Zhang, Zhiqiang, et al.
Publicado: (2023) -
Federated Learning Based Fault Diagnosis Driven by Intra-Client Imbalance Degree
por: Zhou, Funa, et al.
Publicado: (2023) -
Trend Feature Consistency Guided Deep Learning Method for Minor Fault Diagnosis
por: Jia, Pengpeng, et al.
Publicado: (2023) -
Fault Diagnosis for Power Transformers through Semi-Supervised Transfer Learning
por: Mao, Weiyun, et al.
Publicado: (2022) -
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020)