Cargando…
Unravelling the Genetic Basis of Moisture Deficit Stress Tolerance in Wheat for Seedling Vigour-Related Traits and Root Traits Using Genome-Wide Association Study
A key abiotic stress that negatively affects seed germination, plant development, and crop yield is moisture deficit stress. Achieving higher vigour and uniform germination under stress conditions is essential for crop establishment and productivity and to enhance the yield. Hence, revealing wheat’s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606372/ https://www.ncbi.nlm.nih.gov/pubmed/37895250 http://dx.doi.org/10.3390/genes14101902 |
_version_ | 1785127300633722880 |
---|---|
author | Ramappa, S Joshi, Monika A. Krishna, Hari Dunna, Vijay Jain, Neelu Sreevathsa, Rohini Devate, Narayana Bhat |
author_facet | Ramappa, S Joshi, Monika A. Krishna, Hari Dunna, Vijay Jain, Neelu Sreevathsa, Rohini Devate, Narayana Bhat |
author_sort | Ramappa, S |
collection | PubMed |
description | A key abiotic stress that negatively affects seed germination, plant development, and crop yield is moisture deficit stress. Achieving higher vigour and uniform germination under stress conditions is essential for crop establishment and productivity and to enhance the yield. Hence, revealing wheat’s capacity to withstand moisture deficit stress during seed germination and early growth stages is fundamental in improving its overall performance. However, the genetic regulation of moisture deficit stress tolerance during the seed germination phase remains largely unexplored. In this study, a total of 193 wheat genotypes were subjected to simulated moisture deficit stress using PEG-6000 (−0.4 MPa) during the seed germination stage. The induced moisture deficit stress significantly reduced various seedling-vigour-related traits. The genetic regions linked to these traits were found using a genome-wide association study (GWAS). The analysis identified 235 MTAs with a significance −log10(p) value of >4. After applying the Bonferroni correction, the study identified 47 unique single nucleotide polymorphisms (SNPs) that are linked to candidate genes important for the trait of interest. The current study emphasises the effectiveness of genome-wide association studies (GWAS) in identifying promising candidate genes, improving wheat seedling vigour and root traits, and offering essential information for the development of wheat cultivars tolerant to moisture deficit stress. |
format | Online Article Text |
id | pubmed-10606372 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106063722023-10-28 Unravelling the Genetic Basis of Moisture Deficit Stress Tolerance in Wheat for Seedling Vigour-Related Traits and Root Traits Using Genome-Wide Association Study Ramappa, S Joshi, Monika A. Krishna, Hari Dunna, Vijay Jain, Neelu Sreevathsa, Rohini Devate, Narayana Bhat Genes (Basel) Article A key abiotic stress that negatively affects seed germination, plant development, and crop yield is moisture deficit stress. Achieving higher vigour and uniform germination under stress conditions is essential for crop establishment and productivity and to enhance the yield. Hence, revealing wheat’s capacity to withstand moisture deficit stress during seed germination and early growth stages is fundamental in improving its overall performance. However, the genetic regulation of moisture deficit stress tolerance during the seed germination phase remains largely unexplored. In this study, a total of 193 wheat genotypes were subjected to simulated moisture deficit stress using PEG-6000 (−0.4 MPa) during the seed germination stage. The induced moisture deficit stress significantly reduced various seedling-vigour-related traits. The genetic regions linked to these traits were found using a genome-wide association study (GWAS). The analysis identified 235 MTAs with a significance −log10(p) value of >4. After applying the Bonferroni correction, the study identified 47 unique single nucleotide polymorphisms (SNPs) that are linked to candidate genes important for the trait of interest. The current study emphasises the effectiveness of genome-wide association studies (GWAS) in identifying promising candidate genes, improving wheat seedling vigour and root traits, and offering essential information for the development of wheat cultivars tolerant to moisture deficit stress. MDPI 2023-09-30 /pmc/articles/PMC10606372/ /pubmed/37895250 http://dx.doi.org/10.3390/genes14101902 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ramappa, S Joshi, Monika A. Krishna, Hari Dunna, Vijay Jain, Neelu Sreevathsa, Rohini Devate, Narayana Bhat Unravelling the Genetic Basis of Moisture Deficit Stress Tolerance in Wheat for Seedling Vigour-Related Traits and Root Traits Using Genome-Wide Association Study |
title | Unravelling the Genetic Basis of Moisture Deficit Stress Tolerance in Wheat for Seedling Vigour-Related Traits and Root Traits Using Genome-Wide Association Study |
title_full | Unravelling the Genetic Basis of Moisture Deficit Stress Tolerance in Wheat for Seedling Vigour-Related Traits and Root Traits Using Genome-Wide Association Study |
title_fullStr | Unravelling the Genetic Basis of Moisture Deficit Stress Tolerance in Wheat for Seedling Vigour-Related Traits and Root Traits Using Genome-Wide Association Study |
title_full_unstemmed | Unravelling the Genetic Basis of Moisture Deficit Stress Tolerance in Wheat for Seedling Vigour-Related Traits and Root Traits Using Genome-Wide Association Study |
title_short | Unravelling the Genetic Basis of Moisture Deficit Stress Tolerance in Wheat for Seedling Vigour-Related Traits and Root Traits Using Genome-Wide Association Study |
title_sort | unravelling the genetic basis of moisture deficit stress tolerance in wheat for seedling vigour-related traits and root traits using genome-wide association study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606372/ https://www.ncbi.nlm.nih.gov/pubmed/37895250 http://dx.doi.org/10.3390/genes14101902 |
work_keys_str_mv | AT ramappas unravellingthegeneticbasisofmoisturedeficitstresstoleranceinwheatforseedlingvigourrelatedtraitsandroottraitsusinggenomewideassociationstudy AT joshimonikaa unravellingthegeneticbasisofmoisturedeficitstresstoleranceinwheatforseedlingvigourrelatedtraitsandroottraitsusinggenomewideassociationstudy AT krishnahari unravellingthegeneticbasisofmoisturedeficitstresstoleranceinwheatforseedlingvigourrelatedtraitsandroottraitsusinggenomewideassociationstudy AT dunnavijay unravellingthegeneticbasisofmoisturedeficitstresstoleranceinwheatforseedlingvigourrelatedtraitsandroottraitsusinggenomewideassociationstudy AT jainneelu unravellingthegeneticbasisofmoisturedeficitstresstoleranceinwheatforseedlingvigourrelatedtraitsandroottraitsusinggenomewideassociationstudy AT sreevathsarohini unravellingthegeneticbasisofmoisturedeficitstresstoleranceinwheatforseedlingvigourrelatedtraitsandroottraitsusinggenomewideassociationstudy AT devatenarayanabhat unravellingthegeneticbasisofmoisturedeficitstresstoleranceinwheatforseedlingvigourrelatedtraitsandroottraitsusinggenomewideassociationstudy |