Cargando…
Influence of Hydrothermal Treatment of Brewer’s Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan
Brewer’s spent grain (BSG) is the most abundant residual in the brewing process. Non-starch polysaccharides such as 1,3-1,4-β-D-glucan (β-glucan) and arabinoxylan (AX) with proven beneficial effects on human health remain in this by-product in high amounts. Incorporating the valuable dietary fiber i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606534/ https://www.ncbi.nlm.nih.gov/pubmed/37893671 http://dx.doi.org/10.3390/foods12203778 |
Sumario: | Brewer’s spent grain (BSG) is the most abundant residual in the brewing process. Non-starch polysaccharides such as 1,3-1,4-β-D-glucan (β-glucan) and arabinoxylan (AX) with proven beneficial effects on human health remain in this by-product in high amounts. Incorporating the valuable dietary fiber into the food industry could contribute to a healthy diet. However, a major challenge is extracting these dietary fibers (i.e., β-glucan and AX) from the solid residue. In this study, hydrothermal treatment (HT) was applied to dissolve the remaining water-insoluble carbohydrates from BSG with the aim to extract high amounts of β-glucan and AX. Particular focus was placed on the molecular weight (MW) range above 50 kDa and 20 kDa, respectively, as these are considered to have health-promoting effects. Different treatment temperatures, reaction times, and internal reactor pressures were tested to determine the best process settings to achieve high yields of β-glucan and AX and to examine the influence on their molecular weight distribution (MWD). Overall, 85.1% β-glucan and 77.3% AX were extracted corresponding to 6.3 g per kg BSG at 160 °C and 178.3 g kg(−1) at 170 °C, respectively. However, less than 20% of both fiber substances were in the desirable MW range above 50 kDa and 20 kDa, respectively. When lower temperatures of 140 and 150 °C were applied, yields of only 3.0 g kg(−1) β-glucan and 128.8 g kg(−1) AX were obtained, whereby the proportion of desirable fiber fractions increased up to 45%. Further investigations focused on the heat-induced degradation of monosaccharides and the formation of undesirable by-products (i.e., HMF and furfural) that might pose a health risk. |
---|