Cargando…

Influence of Hydrothermal Treatment of Brewer’s Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan

Brewer’s spent grain (BSG) is the most abundant residual in the brewing process. Non-starch polysaccharides such as 1,3-1,4-β-D-glucan (β-glucan) and arabinoxylan (AX) with proven beneficial effects on human health remain in this by-product in high amounts. Incorporating the valuable dietary fiber i...

Descripción completa

Detalles Bibliográficos
Autores principales: Steiner, Julia, Kupetz, Michael, Becker, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606534/
https://www.ncbi.nlm.nih.gov/pubmed/37893671
http://dx.doi.org/10.3390/foods12203778
_version_ 1785127339235999744
author Steiner, Julia
Kupetz, Michael
Becker, Thomas
author_facet Steiner, Julia
Kupetz, Michael
Becker, Thomas
author_sort Steiner, Julia
collection PubMed
description Brewer’s spent grain (BSG) is the most abundant residual in the brewing process. Non-starch polysaccharides such as 1,3-1,4-β-D-glucan (β-glucan) and arabinoxylan (AX) with proven beneficial effects on human health remain in this by-product in high amounts. Incorporating the valuable dietary fiber into the food industry could contribute to a healthy diet. However, a major challenge is extracting these dietary fibers (i.e., β-glucan and AX) from the solid residue. In this study, hydrothermal treatment (HT) was applied to dissolve the remaining water-insoluble carbohydrates from BSG with the aim to extract high amounts of β-glucan and AX. Particular focus was placed on the molecular weight (MW) range above 50 kDa and 20 kDa, respectively, as these are considered to have health-promoting effects. Different treatment temperatures, reaction times, and internal reactor pressures were tested to determine the best process settings to achieve high yields of β-glucan and AX and to examine the influence on their molecular weight distribution (MWD). Overall, 85.1% β-glucan and 77.3% AX were extracted corresponding to 6.3 g per kg BSG at 160 °C and 178.3 g kg(−1) at 170 °C, respectively. However, less than 20% of both fiber substances were in the desirable MW range above 50 kDa and 20 kDa, respectively. When lower temperatures of 140 and 150 °C were applied, yields of only 3.0 g kg(−1) β-glucan and 128.8 g kg(−1) AX were obtained, whereby the proportion of desirable fiber fractions increased up to 45%. Further investigations focused on the heat-induced degradation of monosaccharides and the formation of undesirable by-products (i.e., HMF and furfural) that might pose a health risk.
format Online
Article
Text
id pubmed-10606534
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106065342023-10-28 Influence of Hydrothermal Treatment of Brewer’s Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan Steiner, Julia Kupetz, Michael Becker, Thomas Foods Article Brewer’s spent grain (BSG) is the most abundant residual in the brewing process. Non-starch polysaccharides such as 1,3-1,4-β-D-glucan (β-glucan) and arabinoxylan (AX) with proven beneficial effects on human health remain in this by-product in high amounts. Incorporating the valuable dietary fiber into the food industry could contribute to a healthy diet. However, a major challenge is extracting these dietary fibers (i.e., β-glucan and AX) from the solid residue. In this study, hydrothermal treatment (HT) was applied to dissolve the remaining water-insoluble carbohydrates from BSG with the aim to extract high amounts of β-glucan and AX. Particular focus was placed on the molecular weight (MW) range above 50 kDa and 20 kDa, respectively, as these are considered to have health-promoting effects. Different treatment temperatures, reaction times, and internal reactor pressures were tested to determine the best process settings to achieve high yields of β-glucan and AX and to examine the influence on their molecular weight distribution (MWD). Overall, 85.1% β-glucan and 77.3% AX were extracted corresponding to 6.3 g per kg BSG at 160 °C and 178.3 g kg(−1) at 170 °C, respectively. However, less than 20% of both fiber substances were in the desirable MW range above 50 kDa and 20 kDa, respectively. When lower temperatures of 140 and 150 °C were applied, yields of only 3.0 g kg(−1) β-glucan and 128.8 g kg(−1) AX were obtained, whereby the proportion of desirable fiber fractions increased up to 45%. Further investigations focused on the heat-induced degradation of monosaccharides and the formation of undesirable by-products (i.e., HMF and furfural) that might pose a health risk. MDPI 2023-10-14 /pmc/articles/PMC10606534/ /pubmed/37893671 http://dx.doi.org/10.3390/foods12203778 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Steiner, Julia
Kupetz, Michael
Becker, Thomas
Influence of Hydrothermal Treatment of Brewer’s Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan
title Influence of Hydrothermal Treatment of Brewer’s Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan
title_full Influence of Hydrothermal Treatment of Brewer’s Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan
title_fullStr Influence of Hydrothermal Treatment of Brewer’s Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan
title_full_unstemmed Influence of Hydrothermal Treatment of Brewer’s Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan
title_short Influence of Hydrothermal Treatment of Brewer’s Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan
title_sort influence of hydrothermal treatment of brewer’s spent grain on the concentration and molecular weight distribution of 1,3-1,4-β-d-glucan and arabinoxylan
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606534/
https://www.ncbi.nlm.nih.gov/pubmed/37893671
http://dx.doi.org/10.3390/foods12203778
work_keys_str_mv AT steinerjulia influenceofhydrothermaltreatmentofbrewersspentgrainontheconcentrationandmolecularweightdistributionof1314bdglucanandarabinoxylan
AT kupetzmichael influenceofhydrothermaltreatmentofbrewersspentgrainontheconcentrationandmolecularweightdistributionof1314bdglucanandarabinoxylan
AT beckerthomas influenceofhydrothermaltreatmentofbrewersspentgrainontheconcentrationandmolecularweightdistributionof1314bdglucanandarabinoxylan