Cargando…
Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represe...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606544/ https://www.ncbi.nlm.nih.gov/pubmed/37895588 http://dx.doi.org/10.3390/e25101467 |
_version_ | 1785127341557547008 |
---|---|
author | Miranda-González, Armando Adrián Rosales-Silva, Alberto Jorge Mújica-Vargas, Dante Escamilla-Ambrosio, Ponciano Jorge Gallegos-Funes, Francisco Javier Vianney-Kinani, Jean Marie Velázquez-Lozada, Erick Pérez-Hernández, Luis Manuel Lozano-Vázquez, Lucero Verónica |
author_facet | Miranda-González, Armando Adrián Rosales-Silva, Alberto Jorge Mújica-Vargas, Dante Escamilla-Ambrosio, Ponciano Jorge Gallegos-Funes, Francisco Javier Vianney-Kinani, Jean Marie Velázquez-Lozada, Erick Pérez-Hernández, Luis Manuel Lozano-Vázquez, Lucero Verónica |
author_sort | Miranda-González, Armando Adrián |
collection | PubMed |
description | Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represent the image captured are altered, which is translated into a loss of information. In this way, there are required procedures to recover data information closest to the real scene. This research project proposes a Denoising Vanilla Autoencoding (DVA) architecture by means of unsupervised neural networks for Gaussian denoising in color and grayscale images. The methodology improves other state-of-the-art architectures by means of objective numerical results. Additionally, a validation set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other types of neural networks responsible for suppressing noise in images. |
format | Online Article Text |
id | pubmed-10606544 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106065442023-10-28 Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise Miranda-González, Armando Adrián Rosales-Silva, Alberto Jorge Mújica-Vargas, Dante Escamilla-Ambrosio, Ponciano Jorge Gallegos-Funes, Francisco Javier Vianney-Kinani, Jean Marie Velázquez-Lozada, Erick Pérez-Hernández, Luis Manuel Lozano-Vázquez, Lucero Verónica Entropy (Basel) Article Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represent the image captured are altered, which is translated into a loss of information. In this way, there are required procedures to recover data information closest to the real scene. This research project proposes a Denoising Vanilla Autoencoding (DVA) architecture by means of unsupervised neural networks for Gaussian denoising in color and grayscale images. The methodology improves other state-of-the-art architectures by means of objective numerical results. Additionally, a validation set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other types of neural networks responsible for suppressing noise in images. MDPI 2023-10-20 /pmc/articles/PMC10606544/ /pubmed/37895588 http://dx.doi.org/10.3390/e25101467 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Miranda-González, Armando Adrián Rosales-Silva, Alberto Jorge Mújica-Vargas, Dante Escamilla-Ambrosio, Ponciano Jorge Gallegos-Funes, Francisco Javier Vianney-Kinani, Jean Marie Velázquez-Lozada, Erick Pérez-Hernández, Luis Manuel Lozano-Vázquez, Lucero Verónica Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise |
title | Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise |
title_full | Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise |
title_fullStr | Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise |
title_full_unstemmed | Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise |
title_short | Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise |
title_sort | denoising vanilla autoencoder for rgb and gs images with gaussian noise |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606544/ https://www.ncbi.nlm.nih.gov/pubmed/37895588 http://dx.doi.org/10.3390/e25101467 |
work_keys_str_mv | AT mirandagonzalezarmandoadrian denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise AT rosalessilvaalbertojorge denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise AT mujicavargasdante denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise AT escamillaambrosioponcianojorge denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise AT gallegosfunesfranciscojavier denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise AT vianneykinanijeanmarie denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise AT velazquezlozadaerick denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise AT perezhernandezluismanuel denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise AT lozanovazquezluceroveronica denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise |