Cargando…

Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise

Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represe...

Descripción completa

Detalles Bibliográficos
Autores principales: Miranda-González, Armando Adrián, Rosales-Silva, Alberto Jorge, Mújica-Vargas, Dante, Escamilla-Ambrosio, Ponciano Jorge, Gallegos-Funes, Francisco Javier, Vianney-Kinani, Jean Marie, Velázquez-Lozada, Erick, Pérez-Hernández, Luis Manuel, Lozano-Vázquez, Lucero Verónica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606544/
https://www.ncbi.nlm.nih.gov/pubmed/37895588
http://dx.doi.org/10.3390/e25101467
_version_ 1785127341557547008
author Miranda-González, Armando Adrián
Rosales-Silva, Alberto Jorge
Mújica-Vargas, Dante
Escamilla-Ambrosio, Ponciano Jorge
Gallegos-Funes, Francisco Javier
Vianney-Kinani, Jean Marie
Velázquez-Lozada, Erick
Pérez-Hernández, Luis Manuel
Lozano-Vázquez, Lucero Verónica
author_facet Miranda-González, Armando Adrián
Rosales-Silva, Alberto Jorge
Mújica-Vargas, Dante
Escamilla-Ambrosio, Ponciano Jorge
Gallegos-Funes, Francisco Javier
Vianney-Kinani, Jean Marie
Velázquez-Lozada, Erick
Pérez-Hernández, Luis Manuel
Lozano-Vázquez, Lucero Verónica
author_sort Miranda-González, Armando Adrián
collection PubMed
description Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represent the image captured are altered, which is translated into a loss of information. In this way, there are required procedures to recover data information closest to the real scene. This research project proposes a Denoising Vanilla Autoencoding (DVA) architecture by means of unsupervised neural networks for Gaussian denoising in color and grayscale images. The methodology improves other state-of-the-art architectures by means of objective numerical results. Additionally, a validation set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other types of neural networks responsible for suppressing noise in images.
format Online
Article
Text
id pubmed-10606544
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106065442023-10-28 Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise Miranda-González, Armando Adrián Rosales-Silva, Alberto Jorge Mújica-Vargas, Dante Escamilla-Ambrosio, Ponciano Jorge Gallegos-Funes, Francisco Javier Vianney-Kinani, Jean Marie Velázquez-Lozada, Erick Pérez-Hernández, Luis Manuel Lozano-Vázquez, Lucero Verónica Entropy (Basel) Article Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represent the image captured are altered, which is translated into a loss of information. In this way, there are required procedures to recover data information closest to the real scene. This research project proposes a Denoising Vanilla Autoencoding (DVA) architecture by means of unsupervised neural networks for Gaussian denoising in color and grayscale images. The methodology improves other state-of-the-art architectures by means of objective numerical results. Additionally, a validation set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other types of neural networks responsible for suppressing noise in images. MDPI 2023-10-20 /pmc/articles/PMC10606544/ /pubmed/37895588 http://dx.doi.org/10.3390/e25101467 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Miranda-González, Armando Adrián
Rosales-Silva, Alberto Jorge
Mújica-Vargas, Dante
Escamilla-Ambrosio, Ponciano Jorge
Gallegos-Funes, Francisco Javier
Vianney-Kinani, Jean Marie
Velázquez-Lozada, Erick
Pérez-Hernández, Luis Manuel
Lozano-Vázquez, Lucero Verónica
Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title_full Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title_fullStr Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title_full_unstemmed Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title_short Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
title_sort denoising vanilla autoencoder for rgb and gs images with gaussian noise
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606544/
https://www.ncbi.nlm.nih.gov/pubmed/37895588
http://dx.doi.org/10.3390/e25101467
work_keys_str_mv AT mirandagonzalezarmandoadrian denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT rosalessilvaalbertojorge denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT mujicavargasdante denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT escamillaambrosioponcianojorge denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT gallegosfunesfranciscojavier denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT vianneykinanijeanmarie denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT velazquezlozadaerick denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT perezhernandezluismanuel denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise
AT lozanovazquezluceroveronica denoisingvanillaautoencoderforrgbandgsimageswithgaussiannoise