Cargando…
Synthesis of nanoporous carbonaceous materials at lower temperatures
Nanoporous carbonaceous materials are ideal ingredients in various industrial products due to their large specific surface area. They are typically prepared by post-synthesis activation and templating methods. Both methods require the input of large amounts of energy to sustain thermal treatment at...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606552/ https://www.ncbi.nlm.nih.gov/pubmed/37901162 http://dx.doi.org/10.3389/fchem.2023.1277826 |
Sumario: | Nanoporous carbonaceous materials are ideal ingredients in various industrial products due to their large specific surface area. They are typically prepared by post-synthesis activation and templating methods. Both methods require the input of large amounts of energy to sustain thermal treatment at high temperatures (typically >600°C), which is clearly in violation of the green-chemistry principles. To avoid this issue, other strategies have been developed for the synthesis of carbonaceous materials at lower temperatures (<600°C). This mini review is focused on three strategies suitable for processing carbons at lower temperatures, namely, hydrothermal carbonization, in situ hard templating method, and mechanically induced self-sustaining reaction. Typical procedures of these strategies are demonstrated by using recently reported examples. At the end, some problems associated with the strategies and potential solutions are discussed. |
---|