Cargando…
Deep Features from Pretrained Networks Do Not Outperform Hand-Crafted Features in Radiomics
In radiomics, utilizing features extracted from pretrained deep networks could result in models with a higher predictive performance than those relying on hand-crafted features. This study compared the predictive performance of models trained with either deep features, hand-crafted features, or a co...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606594/ https://www.ncbi.nlm.nih.gov/pubmed/37892087 http://dx.doi.org/10.3390/diagnostics13203266 |