Cargando…
Epidemiological Data Mining for Assisting with Foodborne Outbreak Investigation
Diseases caused by the consumption of food are a significant but avoidable public health issue, and identifying the source of contamination is a key step in an outbreak investigation to prevent foodborne illnesses. Historical foodborne outbreaks provide rich data on critical attributes such as outbr...
Autores principales: | Tao, Dandan, Zhang, Dongyu, Hu, Ruofan, Rundensteiner, Elke, Feng, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606626/ https://www.ncbi.nlm.nih.gov/pubmed/37893718 http://dx.doi.org/10.3390/foods12203825 |
Ejemplares similares
-
Crowdsourcing and machine learning approaches for extracting entities indicating potential foodborne outbreaks from social media
por: Tao, Dandan, et al.
Publicado: (2021) -
A Novel Foodborne Illness Detection and Web Application Tool Based on Social Media
por: Tao, Dandan, et al.
Publicado: (2023) -
Epidemiology of foodborne Norovirus outbreaks in Catalonia, Spain
por: Martinez, Ana, et al.
Publicado: (2008) -
Epidemiology of Foodborne Norovirus Outbreak in Incheon, Korea
por: Yu, Jun-Hwan, et al.
Publicado: (2010) -
An Adjusted Likelihood Ratio Approach Analysing Distribution of Food Products to Assist the Investigation of Foodborne Outbreaks
por: Norström, Madelaine, et al.
Publicado: (2015)