Cargando…
Deep-Learning-Based Classification of Cyclic-Alternating-Pattern Sleep Phases
Determining the cyclic-alternating-pattern (CAP) phases in sleep using electroencephalography (EEG) signals is crucial for assessing sleep quality. However, most current methods for CAP classification primarily rely on classical machine learning techniques, with limited implementation of deep-learni...
Autores principales: | Kahana, Yoav, Aberdam, Aviad, Amar, Alon, Cohen, Israel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606713/ https://www.ncbi.nlm.nih.gov/pubmed/37895516 http://dx.doi.org/10.3390/e25101395 |
Ejemplares similares
-
Visual and automatic classification of the cyclic alternating pattern in electroencephalography during sleep
por: Largo, R., et al.
Publicado: (2019) -
Effects of CPAP Treatment on Electroencephalographic Activity in Patients with Obstructive Sleep Apnea Syndrome During Deep Sleep with Consideration of Cyclic Alternating Pattern
por: Chen, Shuliang, et al.
Publicado: (2022) -
Automatic Detection of the Cyclic Alternating Pattern of Sleep and Diagnosis of Sleep-Related Pathologies Based on Cardiopulmonary Resonance Indices
por: Cui, Jiajia, et al.
Publicado: (2022) -
Validation of Deep Learning-based Sleep State Classification
por: Chen, Wei, et al.
Publicado: (2022) -
Cyclic Alternating Pattern in Obstructive Sleep Apnea Patients with versus without Excessive Sleepiness
por: Korkmaz, Selda, et al.
Publicado: (2018)