Cargando…
Graph Clustering with High-Order Contrastive Learning
Graph clustering is a fundamental and challenging task in unsupervised learning. It has achieved great progress due to contrastive learning. However, we find that there are two problems that need to be addressed: (1) The augmentations in most graph contrastive clustering methods are manual, which ca...
Autores principales: | Li, Wang, Zhu, En, Wang, Siwei, Guo, Xifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606795/ https://www.ncbi.nlm.nih.gov/pubmed/37895553 http://dx.doi.org/10.3390/e25101432 |
Ejemplares similares
-
Auxiliary Graph for Attribute Graph Clustering
por: Li, Wang, et al.
Publicado: (2022) -
Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering
por: Zhang, Pei, et al.
Publicado: (2020) -
Deep single-cell RNA-seq data clustering with graph prototypical contrastive learning
por: Lee, Junseok, et al.
Publicado: (2023) -
Deep graph level anomaly detection with contrastive learning
por: Luo, Xuexiong, et al.
Publicado: (2022) -
Graph Neural Network-Guided Contrastive Learning for Sequential Recommendation
por: Yang, Xing-Yao, et al.
Publicado: (2023)